hongss
hongss
 torch.cuda.is_available() return false but print(torch.version.cuda) result:10.1.243
 我成功运行了,也成功检测,但是不知道为什么出来的图片好像颜色不太对,并不是原图出来
How is your depth predictor trained? What is the code for training? What training set did you use?
作者大大你好,你是把src文件闭源了吗?不知道是因为什么原因?不知道方不方便开源以供大家学习参考。万分感谢!
我自己移植了一个建图算法,里面使用了pcl的ransac平面拟合算法,x86电脑平台下,gdb调试确定,在调用 ransac.computeModel()这个函数的时候出现内存重复释放的错误。同样是相同的代码在cmake编译下可以正常运行。同样也是相同的代码,在arm工控机平台就可以正常运行。都是使用--config=opt --config=gpu的编译选项。 此外,我在x86平台上写了个小demo测试 void PclTestCpt::pcCbk(const std::shared_ptr &msg) { pcl::PointCloud::Ptr cloud_tmp(new pcl::PointCloud); for(int k=0;kpoint_size(); k ++) { pcl::PointXYZ tmp; tmp.x = msg->point(k).x(); tmp.y = msg->point(k).y(); tmp.z = msg->point(k).z(); cloud_tmp->points.push_back(tmp); }...
第一次执行结果  第二次执行结果  地图(target)  当前局部地图(source)  使用局部在线地图与离线地图进行重定位,定位结果与实际不符,产生误匹配
terminate called after throwing an instance of 'cv::Exception' what(): OpenCV(3.4.11) /home/hongss/opencv-3.4.11/modules/imgproc/src/median_blur.dispatch.cpp:283: error: (-215:Assertion failed) !_src0.empty() in function 'medianBlur'