LiDAR4D
                                
                                 LiDAR4D copied to clipboard
                                
                                    LiDAR4D copied to clipboard
                            
                            
                            
                        💫 [CVPR 2024] LiDAR4D: Dynamic Neural Fields for Novel Space-time View LiDAR Synthesis
LiDAR4D: Dynamic Neural Fields for Novel Space-time View LiDAR Synthesis
Zehan Zheng, Fan Lu, Weiyi Xue, Guang Chen†, Changjun Jiang  († Corresponding author)
CVPR 2024
This repository is the official PyTorch implementation for LiDAR4D.
Changelog
2024-5-4:📈 We update flow fields and improve temporal interpolation.
2024-4-13:📈 We update U-Net of LiDAR4D for better ray-drop refinement.
2024-4-5:🚀 Code of LiDAR4D is released.
2024-4-4:🔥 You can reach the preprint paper on arXiv as well as the project page.
2024-2-27:🎉 Our paper is accepted by CVPR 2024.
Introduction
LiDAR4D is a differentiable LiDAR-only framework for novel space-time LiDAR view synthesis, which reconstructs dynamic driving scenarios and generates realistic LiDAR point clouds end-to-end. It adopts 4D hybrid neural representations and motion priors derived from point clouds for geometry-aware and time-consistent large-scale scene reconstruction.
Getting started
Installation
git clone https://github.com/ispc-lab/LiDAR4D.git
cd LiDAR4D
conda create -n lidar4d python=3.9
conda activate lidar4d
# PyTorch
# CUDA 12.1
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121
# CUDA 11.8
# pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
# CUDA <= 11.7
# pip install torch==2.0.0 torchvision torchaudio
# Dependencies
pip install -r requirements.txt
# Local compile for tiny-cuda-nn
git clone --recursive https://github.com/nvlabs/tiny-cuda-nn
cd tiny-cuda-nn/bindings/torch
python setup.py install
# compile packages in utils
cd utils/chamfer3D
python setup.py install
Dataset
KITTI-360 dataset (Download)
We use sequence00 (2013_05_28_drive_0000_sync) for experiments in our paper.
Download KITTI-360 dataset (2D images are not needed) and put them into data/kitti360.
(or use symlinks: ln -s DATA_ROOT/KITTI-360 ./data/kitti360/).
The folder tree is as follows:
data
└── kitti360
    └── KITTI-360
        ├── calibration
        ├── data_3d_raw
        └── data_poses
Next, run KITTI-360 dataset preprocessing: (set DATASET and SEQ_ID)
bash preprocess_data.sh
After preprocessing, your folder structure should look like this:
configs
├── kitti360_{sequence_id}.txt
data
└── kitti360
    ├── KITTI-360
    │   ├── calibration
    │   ├── data_3d_raw
    │   └── data_poses
    ├── train
    ├── transforms_{sequence_id}test.json
    ├── transforms_{sequence_id}train.json
    └── transforms_{sequence_id}val.json
Run LiDAR4D
Set corresponding sequence config path in --config and you can modify logging file path in --workspace. Remember to set available GPU ID in CUDA_VISIBLE_DEVICES.
Run the following command:
# KITTI-360
bash run_kitti_lidar4d.sh
Acknowledgment
We sincerely appreciate the great contribution of the following works:
Citation
Please use the following citation if you find our repo or paper helps:
@inproceedings{zheng2024lidar4d,
  title     = {LiDAR4D: Dynamic Neural Fields for Novel Space-time View LiDAR Synthesis},
  author    = {Zheng, Zehan and Lu, Fan and Xue, Weiyi and Chen, Guang and Jiang, Changjun},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2024}
  }
License
All code within this repository is under Apache License 2.0.