pytorch-LiLaNet
pytorch-LiLaNet copied to clipboard
Implementation of "Boosting LiDAR-based Semantic Labeling by Cross-Modal Training Data Generation"
pytorch-LiLa 
Inofficial PyTorch implementation of Boosting LiDAR-based Semantic Labeling by Cross-Modal Training Data Generation (Piewak et al., 2018).
Differences:
The Autolabeling process is currently not used, instead the converted KITTI data from SqueezeSeg is used. For better convergence we add batch normalization after each convolutional layer.
Results:
Car | Pedestrian | Cyclist | mIoU | |
---|---|---|---|---|
SqueezeSeg | 64.6 | 21.8 | 25.1 | 37.2 |
SqueezeSegV2 | 73.2 | 27.8 | 33.6 | 44.9 |
LiLaNet | 67.6 | 36.9 | 31.9 | 45.5 |
Requirements
- Install PyTorch (pytorch.org)
-
pip install -r requirements.txt
- Download the KITTI Lidar dataset
Usage
Train model:
Important: The dataset-dir
must contain the lidar_2d
and the ImageSet
folder.
python train_kitti.py --dataset-dir 'data/kitti'