Damons Sun

Results 13 issues of Damons Sun

I come across this error when i using vcg . My computer system is windows 10 ,visual stuido 2017 64bit in the file \vcg\complex\algorithms\create\ball_pivoting.h line 204 please check

Vocabulary.h using c++17 compile generate error because: void toStream( std::ostream &str, bool compressed=true) const throw(std::exception); throw specifier deprecated in c++17 hope you can fix

I want to learn the algorithm not just to use. can you share some papers or any helpful pages or materials? Thanks a lot

in the function : static int del_init_tri( delaunay_t *del, int start ) I think this function is use for creating a initial triangle . here is the code which confused...

here is the test code : ``` int test2() { using namespace std::literals; //std::string original = "𝔾𝕠𝕠𝕕 𝕞𝕠𝕣𝕟𝕚𝕟𝕘 𝔾𝕠𝕠𝕕 𝕞𝕠𝕣𝕟𝕚𝕟𝕘"; std::string original = "戦場のヴァルキュリア3"; auto bdata = original.data(); static constexpr...

as you describe at : https://github.com/hanickadot/compile-time-regular-expressions#unicode std::u8string is supported after c++20 How can I do the same thing using C++17? I used std::string instead of std::u8string , I got wrong...

when I load stl file in meshlab, I want to unify the vertice, and remove the duplicate vertice. It is in the function RemoveDuplicateVertex which is located at src\vcglib\vcg\complex\algorithms\clean.h As...

feature request

https://github.com/OAID/Tengine/blob/tengine-lite/source/device/cpu/CMakeLists.txt#:~:text=IF%20(-,TENGINE_TARGET_PROCESSOR_64BIT,-AND%20%24%7BTENGINE_ARCH_ARM_82%7D 这个地方的CMake变量应该是错误的 大小写写错了? 这导致armv82都不能编译,看来你们这个都不检查的

希望能在profile中加入算子调用次数及算子调用的kernel名称 加入算子调用次数: profile.cc line 180 for (auto p : profiling_data_) { if (summary_map.find(p->op_name) != summary_map.end()) { if (do_average) summary_map[p->op_name][0] += p->kernel_time / p->count; else summary_map[p->op_name][0] += p->kernel_time; **summary_map[p->op_name][1] = summary_map[p->op_name][1]...

测试了ghostnet_pytorch中的模型,用的预训练的pth,转成onnx 结果hardsigmoid拆成了3个,不是单独的hardsigmoid是为什么呢? 这么转的onnx: def main(): args = parser.parse_args() model = ghostnet(num_classes=args.num_classes, width=args.width, dropout=args.dropout) model.load_state_dict(torch.load('./models/state_dict_73.98.pth')) args.num_gpu = 0 if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda() elif args.num_gpu < 1: model...