爱可可-爱生活

Results 92 comments of 爱可可-爱生活

No 1. 【Matplotlib终极指南】 No 2. 《Single-shot real-time femtosecond imaging of temporal focusing》 No 3. 【纯用NumPy实现神经网络】 No 4. ❤️ http://t.cn/E7jQOXU ​ No 5. 警惕所有不提具体任务和数据集、鼓吹“AI(再次/全面)超越人类” No 6. 【用Python/Geopandas/Matplotlib创建gif地图图片】 No 7. 笑容逐渐舒展 [笑cry]...

No 1. 《Meta-Learning: A Survey》 No 2. 【有助于 科学家 提高写作效率 的 十条简单规则】 No 3. 《Variational Bayesian Monte Carlo》 No 4. 《The Deep Weight Prior. Modeling a prior distribution for CNNs...

No 1. 《A Novel Domain Adaptation Framework for Medical Image Segmentation》 No 2. 《Do Deep Generative Models Know What They Don't Know?》 No 3. 《Deep Learning for Image Denoising: A...

No 1. 《You May Not Need Attention》 No 2. 《Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training》 No 3. 《GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks》 No 4....

No 1. 《The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale》 No 2. 《Face Recognition: From Traditional to Deep Learning Methods》 No 3....

No 1. 《YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers》 No 2. 《Gradient Descent Finds Global Minima of Deep Neural Networks》 No 3. 《DeepMasterPrints: Generating MasterPrints for Dictionary...

No 1. 《Rethinking ImageNet Pre-training》 No 2. 《YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers》 No 3. 《Orthographic Feature Transform for Monocular 3D Object Detection》 No 4. 《Learning...

No 1. 【基因组学深度学习入门】 No 2. 【新任务&数据集:视觉常识推理(VCR)】 No 3. 《Smooth Loss Functions for Deep Top-k Classification》 No 4. 《Dataset Distillation》 No 5. 《Weakly Supervised Semantic Image Segmentation with Self-correcting Networks》 No...

No 1. 《An Introduction to Deep Reinforcement Learning》 No 2. 《Graph-Based Global Reasoning Networks》 No 3. 《Deformable ConvNets v2: More Deformable, Better Results》 No 4. 《Are All Training Examples Created...

No 1. 《Deep Learning on Graphs: A Survey》 No 2. 《ShelfNet for Real-time Semantic Segmentation》 No 3. 《Recent Advances in Autoencoder-Based Representation Learning》 No 4. 《Bag of Tricks for Image...