SiT-Dataset
SiT-Dataset copied to clipboard
SiT Dataset: Socially Interactive Pedestrian Trajectory Dataset for Social Navigation Robots
SiT Dataset: Socially Interactive Pedestrian Trajectory Dataset for Social Navigation Robots
Example of SiT dataset
Updates
- [2023-09] Our paper is accepted to NeurIPS 2023 Dataset and Benchmark Track! Paper Link
- [2023-07] SiT benchmark and devkit for each perception task release on Github.
- [2023-07] Dockerfiles for each perception task release on Dockerhub.
- [2023-07] SiT Mini-Dataset release on public.
- [2023-06] SiT mini Dataset released on Google Drive.
- [2023-06] Semantic map data of SiT Dataset released on Github.
- [2023-05] We opened SiT Dataset Github.
- [2023-05] We opened SiT Dataset Website.
Upcomings
- [2023] Weights of trained models for 3D object detection and Trajectory prediction release on public.
- [2023] SiT Full dataset with rosbag files release on public.
- [2024] SiT End-to-End pedestrain trajectory prediction challenge starts on Eval AI.
Overview
Our Social Interactive Trajectory (SiT) dataset is a unique collection of pedestrian trajectories for designing advanced social navigation robots. It includes a range of sensor data, annotations, and offers a unique perspective from a robot navigating crowded environments, capturing dynamic human-robot interactions. It's meticulously organized for training and evaluating models across tasks like 3D detection, 3D multi-object tracking, and trajectory prediction, providing an end-to-end modular approach. It includes a comprehensive benchmark and exhibits the performance of several baseline models. This dataset is a valuable resource for future pedestrian trajectory prediction research, supporting the development of safe and agile social navigation robots.
Robot Platform & Sensor Setup
- Ubuntu 18.04 LTS
- ROS Melodic
- Clearpath Husky UGV
- Velodyne VLP-16 * 2
- RGB Camera Basler a2A1920-51gc PRO GigE * 5
- MTi-680G IMU & GPS * 1
- VectorNAV VN-100 IMU * 1
Ground Truth
We provide GT boxes for 2D and 3D data as below.
- 2D: Class name, Track ID, Camera number, Top left X coordinate, Top left Y coordinate, Width (w), and Height (h)
- 3D: Class name, Track ID, Height (h), Length (l), Width (w), X, Y, and Z coordinates, and rotation (rot).
Benchmarks
We provide benchmarks and weights of trained models for 3D pedestrian detection, 3D Multi-Object Tracking, Pedestrian Trajectory Prediction and End-to-End Motion Forecasting.
3D Object Detection
Methods | Modality | mAP ↑ | AP(0.25) ↑ | AP(0.5) ↑ | AP(1.0) ↑ | AP(2.0) ↑ | Trained |
---|---|---|---|---|---|---|---|
FCOS3D | Camera | 0.131 | 0.054 | 0.147 | 0.162 | 0.162 | TBD |
PointPillars | LiDAR | 0.319 | 0.202 | 0.316 | 0.346 | 0.414 | TBD |
CenterPoint-P | LiDAR | 0.382 | 0.233 | 0.388 | 0.424 | 0.482 | TBD |
CenterPoint-V | LiDAR | 0.514 | 0.352 | 0.522 | 0.556 | 0.620 | TBD |
Transfusion-P | Fusion | 0.396 | 0.213 | 0.371 | 0.451 | 0.551 | TBD |
Transfusion-V | Fusion | 0.533 | 0.360 | 0.512 | 0.587 | 0.672 | TBD |
3D Multi-Object Trajectory Tracking
Method | sAMOTA↑ | AMOTA↑ | AMOTP(m)↓ | MOTA↑ | MOTP(m)↓ | IDS↓ |
---|---|---|---|---|---|---|
PointPillars + AB3DMOT | 0.3679 | 0.0826 | 0.5125 | 0.2073 | 0.9702 | 1048 |
Centerpoint Detector + AB3DMOT | 0.4626 | 0.1159 | 0.3757 | 0.3438 | 0.8360 | 554 |
Centerpoint Tracker | 0.7244 | 0.2793 | 0.2611 | 0.5150 | 0.4274 | 1136 |
Pedestrian Trajectory Prediction
Name | Map | ADE5 ↓ | FDE5 ↓ | ADE20 ↓ | FDE20 ↓ | Trained |
---|---|---|---|---|---|---|
Social-LSTM | X | 1.336 | 2.554 | 1.319 | 2.519 | TBD |
Y-NET | X | 1.188 | 2.427 | 0.640 | 1.547 | TBD |
Y-NET | O | 1.036 | 2.306 | 0.596 | 1.370 | TBD |
NSP-SFM | X | 1.036 | 1.947 | 0.529 | 0.936 | TBD |
NSP-SFM | O | 0.808 | 1.549 | 0.443 | 0.807 | TBD |
End-to-End Pedestrian Motion Forecasting
Method | mAP ↑ | mAPf ↑ | ADE5 ↓ | FDE5 ↓ | Trained |
---|---|---|---|---|---|
Fast and Furious | 0.490 | 0.079 | 1.915 | 3.273 | TBD |
FutureDet-P | 0.209 | 0.037 | 2.532 | 4.537 | TBD |
FutureDet-V | 0.408 | 0.053 | 2.416 | 4.409 | TBD |
Download Dataset
-
Download SiT Mini dataset from below Google Drive link.
Click Download link. -
Full dataset and Rosbag files will be uploaded(TBD).
ROS Bag Raw Data
ROS bagfiles include below sensor data:
Topic Name | Message Type | Message Descriptison |
---|---|---|
/29_camera/pylon_camera_node/ image_raw/compressed |
sensor_msgs/CompressedImage | Compressed Bayer Image by Basler a2A1920-51gv PRO GigE |
/41_camera/pylon_camera_node/ image_raw/compressed |
sensor_msgs/CompressedImage | Compressed Bayer Image by Basler a2A1920-51gv PRO GigE |
/46_camera/pylon_camera_node/ image_raw/compressed |
sensor_msgs/CompressedImage | Compressed Bayer Image by Basler a2A1920-51gv PRO GigE |
/47_camera/pylon_camera_node/ image_raw/compressed |
sensor_msgs/CompressedImage | Compressed Bayer Image by Basler a2A1920-51gv PRO GigE |
/65_camera/pylon_camera_node/ image_raw/compressed |
sensor_msgs/CompressedImage | Compressed Bayer Image by Basler a2A1920-51gv PRO GigE |
/bottom/velodyne_points | sensor_msgs/PointCloud2 | Pointcloud by Velodyne VLP-16 |
/top/velodyne_points | sensor_msgs/PointCloud2 | Pointcloud by Velodyne VLP-16 |
/vn100/vectornav/IMU | sensor_msgs/Imu | VN-100 IMU |
/xsens/filter/position_interpolated | geometry_msgs/Vector3Stamped | Interpolated GNSS data to the timestep of top velodyne |
/xsens/filter/positionlla | geometry_msgs/Vector3Stamped | GNSS by MTi-680 |
/xsens/imu/data | sensor_msgs/Imu | IMU by MTi-680 |
/xsens/imu_interpolated | sensor_msgs/Imu | Interpolated IMU data to the timestep of top velodyne |
License

The SiT dataset is published under the CC BY-NC-ND License 4.0, and all codes are published under the Apache License 2.0.
Acknowledgement
The SiT dataset is contributed by Jongwook Bae, Jungho Kim, Junyong Yun, Changwon Kang, Junho Lee, Jeongseon Choi, Chanhyeok Kim, Jungwook Choi, advised by Jun-Won Choi.
We thank the maintainers of the following projects that enable us to develop SiT Dataset: MMDetection
by MMLAB