PaccMann
PaccMann
paccmann_kinase_binding_residues
Comparison of active site and full kinase sequences for drug-target affinity prediction and molecular generation. Full paper: https://pubs.acs.org/doi/10.1021/acs.jcim.1c00889
paccmann_proteomics
PaccMann models for protein language modeling
paccmann_sarscov2
Code for paper on automation of discovery and synthesis of targeted molecules: https://iopscience.iop.org/article/10.1088/2632-2153/abe808
paccmann_rl
Code pipeline for the PaccMann^RL in iScience: https://www.cell.com/iscience/fulltext/S2589-0042(21)00237-6
TITAN
Code for "T Cell Receptor Specificity Prediction with Bimodal Attention Networks" (https://doi.org/10.1093/bioinformatics/btab294, ISMB 2021)
chemical_representation_learning_for_toxicity_prediction
Chemical representation learning paper in Digital Discovery
paccmann_datasets
pytoda - PaccMann PyTorch Dataset Classes. Read the docs: https://paccmann.github.io/paccmann_datasets/
paccmann_predictor
PyTorch implementation of bimodal neural networks for drug-cell (pharmarcogenomics) and drug-protein (proteochemometrics) interaction prediction
fdsa
A fully differentiable set autoencoder