Yueqian Liu
Yueqian Liu
Hi @Mayankm96, thanks for the advice, I'll try to put it there!
So as I'm trying to add principal axes and moments of inertia attributes to the rigid body, I find that the function: https://github.com/NVIDIA-Omniverse/orbit/blob/fcc216a5399661b6f3125e1e0a99235f073a3124/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/schemas/schemas.py#L302 lacks support for these settings. Any suggestion...
Hi @TheLonelyFighter, Thanks for commenting. I want to add that using the timestamp data that comes with `VehicleLocalPosition` (100Hz) is also fine (verified on real hardware). Cheers~
That works for me, many thx!
Thank you @Denys88 and @ViktorM for providing the examples and the pointer to the `A2CResnetBuilder`. While waiting for the answer, I was also looking at the code in [network builder](https://github.com/Denys88/rl_games/blob/master/rl_games/algos_torch/network_builder.py)...
> @ViktorM @Denys88 the example above assumes that you are using a frozen network. You can't optimise the weights of this network because `rl_games` has `torch.infernce()` context for doing running...
I am trying to do e2e learning to also optimize the CNN weights. Why does normalizing the input to a network with no grad break the compute graph? Could you...
郑博 @xuankuzcr 您好!我有类似的问题想请教一下 。 我使用了一个类似L515的传感器(噪声比较大,最大量程2.5m左右,标定结果在[这里](https://drive.google.com/file/d/1mE6I2LN7I9eVmZ7p1V2uY3DI5F9QDaRb/view?usp=drive_link),且可以认为Lidar frame和cam frame是一致的),正在试图运行LIVO2在自己的[数据集](https://drive.google.com/file/d/1o9LirEnLpqiOlSnMlPIt9dwvlKuq4idY/view?usp=drive_link)上,但是不成功。 https://github.com/user-attachments/assets/3e2572a1-c23a-418f-8db5-9dec0cb16751 相机配置文件我是这么写的: ```yaml cam_model: Pinhole cam_width: 320 cam_height: 240 scale: 0.5 # 这是什么?没改 cam_fx: 227.46204253 cam_fy: 227.42116608 cam_cx: 159.92612471 cam_cy: 120.20147916 cam_d0: 0.03141088...
@xuankuzcr 感谢回复。想顺势追问几个问题: 1. 关于初始化:是否需要让系统完全静止,手持时的抖动是否会有不好的影响? 2. 关于点云质量:如果在所有其他参数准确的情况下,这种点云能够work吗?我的理解是在点云匹配时平面很难找准,所以可能还是有点困难,对吗?如果可以work的话对于参数调节有什么其他建议么? 3. 关于相机外参:点云是直接从深度图反投影得到的,这样TF应该是单位矩阵没错?然后图2是如何看出来是外参而不是点云本身质量问题导致的不和谐呢? 4. 关于内参:d0到d3对应的是k1, k2, p1, p2吗? 5. 关于其他提供点云的传感器:点云质量方面L515优于我这个数据集,那D435和D455之类的呢?这方面有进一步评论吗? 谢谢您看到这里,问的问题或许有点naive,望指教~
> 1. 可以手抖,是初始化时间太短了,最好超过3s > 2. 平面厚度快半米了,不能work > 3. 原始的深度图和灰度图就没有对得很准,因为你反投影操恢复的有色点云棋盘格边缘就很不锐利 > 4. 是 > 5. 深度相机没有测过 谢谢解答~ @xuankuzcr