zhongzee

Results 5 issues of zhongzee

Traceback (most recent call last): File "/mnt/afs/liwenhao/wuzhongze/mPLUG-Owl-main/mPLUG-Owl2/mplug_owl2/train/train_xformers.py", line 13, in train() File "/mnt/afs/liwenhao/wuzhongze/mPLUG-Owl-main/mPLUG-Owl2/mplug_owl2/train/train.py", line 778, in train trainer.train() File "/mnt/afs/liwenhao/mplug_owl/lib/python3.10/site-packages/transformers/trainer.py", line 1539, in train return inner_training_loop( File "/mnt/afs/liwenhao/mplug_owl/lib/python3.10/site-packages/transformers/trainer.py", line 1809,...

bug
training

### Describe the issue My zero3.json config is: { "fp16": { "enabled": “auto”, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled":“auto” }, "train_micro_batch_size_per_gpu": "auto",...

目前configs下只有finetune-coco和zero-shot的配置文件,请问如下结果应该怎么配置configs文件呢?训练和测试类别数应该怎么设置 ![微信图片_20240514163248](https://github.com/AILab-CVC/YOLO-World/assets/45118059/e3145543-5ae1-4a25-9909-574ac8c3ab1e)

Finetuning

chmod +x tools/dist_train.sh # sample command for pre-training, use AMP for mixed-precision training ./tools/dist_train.sh configs/pretrain/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py 8 --amp 这个命令只适合单服务器的,如和改成多服务器的形式呢?nodes和node_rank要怎么设置呢?

yolo_world_v2_l_clip_large_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_800ft_lvis_minival.py 部分配置如下:如果想要加载该预训练权重,并且执行dist_train.sh 1)我应该怎么冻结下面load_from的的所有权重,并修改backbone部分结构,比如添加适配层来微调该权重呢? 2)load_from的权重包括yolov8backbone/neck层/head层的权重是吗? load_from = '/mnt/afs/huangtao3/wzz/YOLO-World/weights/YOLO-World/yolo_world_v2_l_clip_large_o365v1_goldg_pretrain_800ft-9df82e55.pth' text_model_name = '/mnt/afs/huangtao3/wzz/YOLO-World/weights/clip-vit-large-patch14-336' img_scale = (800, 800) # model settings model = dict( type='YOLOWorldDetector', mm_neck=True, num_train_classes=num_training_classes, num_test_classes=num_classes, data_preprocessor=dict(type='YOLOWDetDataPreprocessor'), backbone=dict( _delete_=True, type='MultiModalYOLOBackbone', image_model={{_base_.model.backbone}}, text_model=dict(...