yolox-pytorch
yolox-pytorch copied to clipboard
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"
Like I want to use it to train cityscape dataset.
参数解析
问下reid_dim指的是啥? init_weights()加了有什么用?
1. 主要是路径问题 , 在config.py中修改路径后,还会去/data/dataset/coco_dataset下找数据 2 目标的类名,不需要写在config.py中吧,直接从数据中读 3. 不确定是不是本程序的问题,wsl2中的linux下暴显存(3090 24G显存) 4. 能否支持预训练模型? 比如我要训练自己的目标检测类,数据量一般的情况下,没预训练模型不方便
验证出错

训练时加上预训练权重后自适应层的loss没有任何变化,这是为什么?给出的预训练权重是包括整个模型的权重吗?

为了检测小目标加入了1/4特征图,为什么结果上没有明显的提升;在其他模型上是有效果的,比如nanodet
Is there any inference program demo on ONNX model? because I keep getting errors when trying to do inference with onnx from other references. Maybe you can help me? Especially...
How to use other backbone networks in “models/backbone” to participate in training and evaluation?
ap, ap_0_5, ap_7_5, ap_small, ap_medium, ap_large, r = val_loader.dataset.run_coco_eval(preds, opt.save_dir)请问这个函数返回的ap_0_5值是mapo0.5 还是map0.5:0.95呀?