yatoubusha
yatoubusha
there is no code in baseline_predictor_demo.ipynb.
raceback (most recent call last): File "/root/lora-scripts-main/sd-scripts/library/train_util.py", line 2579, in replace_unet_modules Traceback (most recent call last): File "/root/lora-scripts-main/sd-scripts/library/train_util.py", line 2579, in replace_unet_modules import xformers.ops ModuleNotFoundError: No module named 'xformers'
为什么要先根据随机初始化的噪音latens,用随机去噪步数对它进行基于lora的去噪操作得到denoised_latents呢?后续的positive_latents, neutral_latents, unconditional_latents都是基于denoised_latens在原始sd上继续去噪的
How to deploy inference code to predict your own images instead of testing datasets like Coco

What should I do if I want to obtain the actual object map of the mask area? 
### Your question  As shown in the figure, clicking the button does not enable the conversion of this function ### Logs _No response_ ### Other _No response_