xumaoxin
Results
1
issues of
xumaoxin
def call(self, x, training=False): if not training: training = tf.constant(False) training = tf.logical_and(training, self.trainable) return super().call(x, training) 代码training = tf.logical_and(training, self.trainable)是如何发挥训练时选择training模式,推理时选择非traning模式的作用的? 看不太懂self.trainabel这个变量。 请大神赐教!