weveng

Results 20 comments of weveng

model = dict( type='FCOS', backbone=dict( type='RLA_ResNet', layers=[3,4,6,3], #depth=50, #num_stages=4, #out_indices=(0, 1, 2, 3), frozen_stages=1, #norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='pytorch', pretrained='/home/wangrui/zhangzhanming/DSL_all/DSL/work_dirs/r50_caffe_mslonger_tricks_0.Xdata/epoch_12.pth'), # pretrained='/home/wangrui/zhangzhanming/DSL_all/DSL/resnet50_rla_2283.pth (1).tar'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1,...

嗯嗯,多谢

您好,我昨天按照您所说的load_from了权重文件,但mAP值依然是从零开始训练的,难道应该是从之前的基础上开始涨点吗?而且我为了模型一致,还把RLA的backbone换成了和baselin相同的r50,请问这是哪里的问题啊?

model = dict( type='FCOS', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='FCOSHead',...

我的有标注照片是八万左右,无标注照片大概35万张。

Epoch(val) [1][5031] bbox_mAP: 0.0340, bbox_mAP_50: 0.0580, bbox_mAP_75: 0.0330, bbox_mAP_s: 0.0040, bbox_mAP_m: 0.0180, bbox_mAP_l: 0.0460, bbox_mAP_copypaste: 0.034 0.058 0.033 0.004 0.018 0.046 Epoch(val) [2][5031] bbox_mAP: 0.0440, bbox_mAP_50: 0.0730, bbox_mAP_75: 0.0450, bbox_mAP_s:...

这是前五个epoch的训练mAP,您看看涨幅正常吗?

而且baseline和unlabel的训练epoch需要一致吗?

训练了12个epoch,step是[8,11]

那主要是哪些方面的原因呢?就还是您上边说的几方面原因是吧?