wenston2006
wenston2006
Hi, thanks for your sharing of the codes at first. I tried to use some new data (20,000 pics) to train the 1_F model through finetuning. I got the test...
如题,我在train.pt中没看到文字识别的ground truth,如果没有文字的标签,文字识别部分如何训练呢?
我把loss_4s和iou loss层都注释掉了,现在仅有文字识别的softmaxwithloss损失函数(mask loss和iou loss都不参与训练); 然后自己写了一个输入数据层,可以输出包含文字的图片(640*640大小), 作为gt的bbox的四个点的坐标以及文字的标签同时输出; 但是训练时候遇到segmentation fault, 提示内存越界; 请问输入给point bilinear layer的bbox大小有什么限制吗?64*8个采样点的条件下, 输入的bbox大小是否有什么要求?
如题,用两块6gb(或8gb)的显卡和用一块12gb的显卡进行训练或测试有什么区别?
感觉在gt_bbox中把ignore_bbox去掉不就可以了吗?
我的意思是 掩膜是单个字符的外接矩形框,还是要把字符沿着笔画边缘分割出来?
@tonghe90 感谢分享代码,我看了之前的issue #16 中,你提到训练数据包括(1) text/non-text region, (2) for every point in the text region, you need to calculate the distance between the current point to the four edges with an...
如题;我看了下网页上给出的测试结果,92%的字符准确率, 80%的字符串准确率; 相比有些算法(如CTC)的结果,似乎优势不明显
I tried to train ABCNetV2 to detect and recognize the chars on Chinese stamps. I modify the _configs/ReCTS/v2_chn_attn_R_50.yaml_ file, where I set: _MIN_SIZE_TRAIN: (128, 256, 384, 512, 640, 768) MAX_SIZE_TRAIN:...
I found the default setting of MIN_SIZE_TRAIN in Base-BAText.yaml is (640, 672, ..., 896) . Can you give some explanation about this setting? I haven't found any information about this...