unsloth icon indicating copy to clipboard operation
unsloth copied to clipboard

Phi-3 error on Kaggle: RuntimeError: Internal Triton PTX codegen error

Open thewebscraping opened this issue 1 year ago • 1 comments

Hi, Can you support notebook on Kaggle? P100 not working. GPU T4 error:

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[15], line 1
----> 1 trainer_stats = trainer.train()

File /opt/conda/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:361, in SFTTrainer.train(self, *args, **kwargs)
    358 if self.neftune_noise_alpha is not None and not self._trainer_supports_neftune:
    359     self.model = self._trl_activate_neftune(self.model)
--> 361 output = super().train(*args, **kwargs)
    363 # After training we make sure to retrieve back the original forward pass method
    364 # for the embedding layer by removing the forward post hook.
    365 if self.neftune_noise_alpha is not None and not self._trainer_supports_neftune:

File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1780, in Trainer.train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)
   1778         hf_hub_utils.enable_progress_bars()
   1779 else:
-> 1780     return inner_training_loop(
   1781         args=args,
   1782         resume_from_checkpoint=resume_from_checkpoint,
   1783         trial=trial,
   1784         ignore_keys_for_eval=ignore_keys_for_eval,
   1785     )

File <string>:355, in _fast_inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)

File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:3036, in Trainer.training_step(self, model, inputs)
   3033     return loss_mb.reduce_mean().detach().to(self.args.device)
   3035 with self.compute_loss_context_manager():
-> 3036     loss = self.compute_loss(model, inputs)
   3038 if self.args.n_gpu > 1:
   3039     loss = loss.mean()  # mean() to average on multi-gpu parallel training

File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:3059, in Trainer.compute_loss(self, model, inputs, return_outputs)
   3057 else:
   3058     labels = None
-> 3059 outputs = model(**inputs)
   3060 # Save past state if it exists
   3061 # TODO: this needs to be fixed and made cleaner later.
   3062 if self.args.past_index >= 0:

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
   1530     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1531 else:
-> 1532     return self._call_impl(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1541, in Module._call_impl(self, *args, **kwargs)
   1536 # If we don't have any hooks, we want to skip the rest of the logic in
   1537 # this function, and just call forward.
   1538 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1539         or _global_backward_pre_hooks or _global_backward_hooks
   1540         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1541     return forward_call(*args, **kwargs)
   1543 try:
   1544     result = None

File /opt/conda/lib/python3.10/site-packages/accelerate/utils/operations.py:825, in convert_outputs_to_fp32.<locals>.forward(*args, **kwargs)
    824 def forward(*args, **kwargs):
--> 825     return model_forward(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/accelerate/utils/operations.py:813, in ConvertOutputsToFp32.__call__(self, *args, **kwargs)
    812 def __call__(self, *args, **kwargs):
--> 813     return convert_to_fp32(self.model_forward(*args, **kwargs))

File /opt/conda/lib/python3.10/site-packages/torch/amp/autocast_mode.py:16, in autocast_decorator.<locals>.decorate_autocast(*args, **kwargs)
     13 @functools.wraps(func)
     14 def decorate_autocast(*args, **kwargs):
     15     with autocast_instance:
---> 16         return func(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/accelerate/utils/operations.py:825, in convert_outputs_to_fp32.<locals>.forward(*args, **kwargs)
    824 def forward(*args, **kwargs):
--> 825     return model_forward(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/accelerate/utils/operations.py:813, in ConvertOutputsToFp32.__call__(self, *args, **kwargs)
    812 def __call__(self, *args, **kwargs):
--> 813     return convert_to_fp32(self.model_forward(*args, **kwargs))

File /opt/conda/lib/python3.10/site-packages/torch/amp/autocast_mode.py:16, in autocast_decorator.<locals>.decorate_autocast(*args, **kwargs)
     13 @functools.wraps(func)
     14 def decorate_autocast(*args, **kwargs):
     15     with autocast_instance:
---> 16         return func(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/unsloth/models/llama.py:882, in PeftModelForCausalLM_fast_forward(self, input_ids, causal_mask, attention_mask, inputs_embeds, labels, output_attentions, output_hidden_states, return_dict, task_ids, **kwargs)
    869 def PeftModelForCausalLM_fast_forward(
    870     self,
    871     input_ids=None,
   (...)
    880     **kwargs,
    881 ):
--> 882     return self.base_model(
    883         input_ids=input_ids,
    884         causal_mask=causal_mask,
    885         attention_mask=attention_mask,
    886         inputs_embeds=inputs_embeds,
    887         labels=labels,
    888         output_attentions=output_attentions,
    889         output_hidden_states=output_hidden_states,
    890         return_dict=return_dict,
    891         **kwargs,
    892     )

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
   1530     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1531 else:
-> 1532     return self._call_impl(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1541, in Module._call_impl(self, *args, **kwargs)
   1536 # If we don't have any hooks, we want to skip the rest of the logic in
   1537 # this function, and just call forward.
   1538 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1539         or _global_backward_pre_hooks or _global_backward_hooks
   1540         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1541     return forward_call(*args, **kwargs)
   1543 try:
   1544     result = None

File /opt/conda/lib/python3.10/site-packages/peft/tuners/tuners_utils.py:161, in BaseTuner.forward(self, *args, **kwargs)
    160 def forward(self, *args: Any, **kwargs: Any):
--> 161     return self.model.forward(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/accelerate/hooks.py:166, in add_hook_to_module.<locals>.new_forward(module, *args, **kwargs)
    164         output = module._old_forward(*args, **kwargs)
    165 else:
--> 166     output = module._old_forward(*args, **kwargs)
    167 return module._hf_hook.post_forward(module, output)

File /opt/conda/lib/python3.10/site-packages/unsloth/models/mistral.py:213, in MistralForCausalLM_fast_forward(self, input_ids, causal_mask, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict, *args, **kwargs)
    205     outputs = LlamaModel_fast_forward_inference(
    206         self,
    207         input_ids,
   (...)
    210         attention_mask = attention_mask,
    211     )
    212 else:
--> 213     outputs = self.model(
    214         input_ids=input_ids,
    215         causal_mask=causal_mask,
    216         attention_mask=attention_mask,
    217         position_ids=position_ids,
    218         past_key_values=past_key_values,
    219         inputs_embeds=inputs_embeds,
    220         use_cache=use_cache,
    221         output_attentions=output_attentions,
    222         output_hidden_states=output_hidden_states,
    223         return_dict=return_dict,
    224     )
    225 pass
    227 hidden_states = outputs[0]

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
   1530     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1531 else:
-> 1532     return self._call_impl(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1541, in Module._call_impl(self, *args, **kwargs)
   1536 # If we don't have any hooks, we want to skip the rest of the logic in
   1537 # this function, and just call forward.
   1538 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1539         or _global_backward_pre_hooks or _global_backward_hooks
   1540         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1541     return forward_call(*args, **kwargs)
   1543 try:
   1544     result = None

File /opt/conda/lib/python3.10/site-packages/accelerate/hooks.py:166, in add_hook_to_module.<locals>.new_forward(module, *args, **kwargs)
    164         output = module._old_forward(*args, **kwargs)
    165 else:
--> 166     output = module._old_forward(*args, **kwargs)
    167 return module._hf_hook.post_forward(module, output)

File /opt/conda/lib/python3.10/site-packages/unsloth/models/llama.py:650, in LlamaModel_fast_forward(self, input_ids, causal_mask, attention_mask, position_ids, past_key_values, inputs_embeds, use_cache, output_attentions, output_hidden_states, return_dict, *args, **kwargs)
    647 past_key_value = past_key_values[idx] if past_key_values is not None else None
    649 if offloaded_gradient_checkpointing:
--> 650     hidden_states = Unsloth_Offloaded_Gradient_Checkpointer.apply(
    651         decoder_layer,
    652         hidden_states,
    653         causal_mask,
    654         attention_mask,
    655         position_ids,
    656         past_key_values,
    657         output_attentions,
    658         use_cache,
    659     )
    661 elif gradient_checkpointing:
    662     def create_custom_forward(module):

File /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py:598, in Function.apply(cls, *args, **kwargs)
    595 if not torch._C._are_functorch_transforms_active():
    596     # See NOTE: [functorch vjp and autograd interaction]
    597     args = _functorch.utils.unwrap_dead_wrappers(args)
--> 598     return super().apply(*args, **kwargs)  # type: ignore[misc]
    600 if not is_setup_ctx_defined:
    601     raise RuntimeError(
    602         "In order to use an autograd.Function with functorch transforms "
    603         "(vmap, grad, jvp, jacrev, ...), it must override the setup_context "
    604         "staticmethod. For more details, please see "
    605         "[https://pytorch.org/docs/master/notes/extending.func.html](https://pytorch.org/docs/master/notes/extending.func.html%3C/span%3E%3Cspan) style="color:rgb(175,0,0)">"
    606     )

File /opt/conda/lib/python3.10/site-packages/torch/cuda/amp/autocast_mode.py:115, in custom_fwd.<locals>.decorate_fwd(*args, **kwargs)
    113 if cast_inputs is None:
    114     args[0]._fwd_used_autocast = torch.is_autocast_enabled()
--> 115     return fwd(*args, **kwargs)
    116 else:
    117     autocast_context = torch.is_autocast_enabled()

File /opt/conda/lib/python3.10/site-packages/unsloth/models/_utils.py:333, in Unsloth_Offloaded_Gradient_Checkpointer.forward(ctx, forward_function, hidden_states, *args)
    331 saved_hidden_states = hidden_states.to("cpu", non_blocking = True)
    332 with torch.no_grad():
--> 333     (output,) = forward_function(hidden_states, *args)
    334 ctx.save_for_backward(saved_hidden_states)
    335 ctx.forward_function = forward_function

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
   1530     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1531 else:
-> 1532     return self._call_impl(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1541, in Module._call_impl(self, *args, **kwargs)
   1536 # If we don't have any hooks, we want to skip the rest of the logic in
   1537 # this function, and just call forward.
   1538 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1539         or _global_backward_pre_hooks or _global_backward_hooks
   1540         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1541     return forward_call(*args, **kwargs)
   1543 try:
   1544     result = None

File /opt/conda/lib/python3.10/site-packages/accelerate/hooks.py:166, in add_hook_to_module.<locals>.new_forward(module, *args, **kwargs)
    164         output = module._old_forward(*args, **kwargs)
    165 else:
--> 166     output = module._old_forward(*args, **kwargs)
    167 return module._hf_hook.post_forward(module, output)

File /opt/conda/lib/python3.10/site-packages/unsloth/models/llama.py:432, in LlamaDecoderLayer_fast_forward(self, hidden_states, causal_mask, attention_mask, position_ids, past_key_value, output_attentions, use_cache, padding_mask, *args, **kwargs)
    430 else:
    431     residual = hidden_states
--> 432     hidden_states = fast_rms_layernorm(self.input_layernorm, hidden_states)
    433     hidden_states, self_attn_weights, present_key_value = self.self_attn(
    434         hidden_states=hidden_states,
    435         causal_mask=causal_mask,
   (...)
    441         padding_mask=padding_mask,
    442     )
    443     hidden_states = residual + hidden_states

File /opt/conda/lib/python3.10/site-packages/unsloth/kernels/rms_layernorm.py:190, in fast_rms_layernorm(layernorm, X, gemma)
    188 W   = layernorm.weight
    189 eps = layernorm.variance_epsilon
--> 190 out = Fast_RMS_Layernorm.apply(X, W, eps, gemma)
    191 return out

File /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py:598, in Function.apply(cls, *args, **kwargs)
    595 if not torch._C._are_functorch_transforms_active():
    596     # See NOTE: [functorch vjp and autograd interaction]
    597     args = _functorch.utils.unwrap_dead_wrappers(args)
--> 598     return super().apply(*args, **kwargs)  # type: ignore[misc]
    600 if not is_setup_ctx_defined:
    601     raise RuntimeError(
    602         "In order to use an autograd.Function with functorch transforms "
    603         "(vmap, grad, jvp, jacrev, ...), it must override the setup_context "
    604         "staticmethod. For more details, please see "
    605         "https://pytorch.org/docs/master/notes/extending.func.html style="color:rgb(175,0,0)">"
    606     )

File /opt/conda/lib/python3.10/site-packages/unsloth/kernels/rms_layernorm.py:144, in Fast_RMS_Layernorm.forward(ctx, X, W, eps, gemma)
    141 r = torch.empty(n_rows, dtype = torch.float32, device = "cuda")
    143 fx = _gemma_rms_layernorm_forward if gemma else _rms_layernorm_forward
--> 144 fx[(n_rows,)](
    145     Y, Y.stride(0),
    146     X, X.stride(0),
    147     W, W.stride(0),
    148     r, r.stride(0),
    149     n_cols, eps,
    150     BLOCK_SIZE = BLOCK_SIZE,
    151     num_warps  = num_warps,
    152 )
    153 ctx.eps = eps
    154 ctx.BLOCK_SIZE = BLOCK_SIZE

File /opt/conda/lib/python3.10/site-packages/triton/runtime/jit.py:167, in KernelInterface.__getitem__.<locals>.<lambda>(*args, **kwargs)
    161 def __getitem__(self, grid) -> T:
    162     """
    163     A JIT function is launched with: fn[grid](*args, **kwargs).
    164     Hence JITFunction.__getitem__ returns a callable proxy that
    165     memorizes the grid.
    166     """
--> 167     return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/triton/runtime/jit.py:416, in JITFunction.run(self, grid, warmup, *args, **kwargs)
    414     # compile the kernel
    415     src = ASTSource(self, signature, constants, configs[0])
--> 416     self.cache[device][key] = compile(
    417         src,
    418         target=target,
    419         options=options.__dict__,
    420     )
    422 kernel = self.cache[device][key]
    423 if not warmup:

File /opt/conda/lib/python3.10/site-packages/triton/compiler/compiler.py:193, in compile(src, target, options)
    191 module = src.make_ir(options)
    192 for ext, compile_ir in list(stages.items())[first_stage:]:
--> 193     next_module = compile_ir(module, metadata)
    194     metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}")
    195     module = next_module

File /opt/conda/lib/python3.10/site-packages/triton/compiler/backends/cuda.py:201, in CUDABackend.add_stages.<locals>.<lambda>(src, metadata)
    199 stages["llir"] = lambda src, metadata: self.make_llir(src, metadata, options, self.capability)
    200 stages["ptx"] = lambda src, metadata: self.make_ptx(src, metadata, options, self.capability)
--> 201 stages["cubin"] = lambda src, metadata: self.make_cubin(src, metadata, options, self.capability)

File /opt/conda/lib/python3.10/site-packages/triton/compiler/backends/cuda.py:194, in CUDABackend.make_cubin(src, metadata, opt, capability)
    192 metadata["name"] = get_kernel_name(src, pattern='// .globl')
    193 ptxas, _ = path_to_ptxas()
--> 194 return compile_ptx_to_cubin(src, ptxas, capability, opt.enable_fp_fusion)

RuntimeError: Internal Triton PTX codegen error: 
ptxas /tmp/compile-ptx-src-a191d3, line 100; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 100; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 102; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 102; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 104; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 104; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 106; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 106; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 108; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 108; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 110; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 110; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 112; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 112; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 114; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 114; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 116; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 116; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 118; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 118; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 120; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 120; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 122; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 122; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 124; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 124; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 126; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 126; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 128; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 128; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 130; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 130; error   : Feature 'cvt with .f32.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 316; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 316; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 318; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 318; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 320; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 320; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 322; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 322; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 324; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 324; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 326; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 326; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 328; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 328; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 330; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 330; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 332; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 332; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 334; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 334; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 336; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 336; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 338; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 338; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 340; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 340; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 342; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 342; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 344; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 344; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 346; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 346; error   : Feature 'cvt.bf16.f32' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 350; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 350; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 354; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 354; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 358; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 358; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 362; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 362; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 366; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 366; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 370; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 370; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 374; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 374; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 378; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 378; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 382; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 382; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 386; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 386; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 390; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 390; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 394; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 394; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 398; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 398; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 402; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 402; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 406; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 406; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 410; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas /tmp/compile-ptx-src-a191d3, line 410; error   : Feature '.bf16' requires .target sm_80 or higher
ptxas fatal   : Ptx assembly aborted due to errors

thewebscraping avatar Apr 30 '24 18:04 thewebscraping

@thewebscraping Oh yep I updated all Kaggle notebooks!! Change the install instructions to

%%capture
!pip install -U "xformers<0.0.26" --index-url https://download.pytorch.org/whl/cu121
!pip install "unsloth[kaggle-new] @ git+https://github.com/unslothai/unsloth.git"

# Temporary fix for https://github.com/huggingface/datasets/issues/6753
!pip install datasets==2.16.0 fsspec==2023.10.0 gcsfs==2023.10.0

import os
os.environ["WANDB_DISABLED"] = "true"

danielhanchen avatar May 01 '24 18:05 danielhanchen

@danielhanchen the first solution works for me!!! Thanks bro

difonjohaiv avatar May 04 '24 08:05 difonjohaiv

Great!

danielhanchen avatar May 04 '24 10:05 danielhanchen

what is the actual problem? I'm receiving the same error on hugginface spaces but I can't use the same solution

TheGhoul21 avatar May 04 '24 13:05 TheGhoul21

@thewebscraping Oh yep I updated all Kaggle notebooks!! Change the install instructions to

%%capture
!pip install -U "xformers<0.0.26" --index-url https://download.pytorch.org/whl/cu121
!pip install "unsloth[kaggle-new] @ git+https://github.com/unslothai/unsloth.git"

# Temporary fix for https://github.com/huggingface/datasets/issues/6753
!pip install datasets==2.16.0 fsspec==2023.10.0 gcsfs==2023.10.0

import os
os.environ["WANDB_DISABLED"] = "true"

Thanks, it's working

thewebscraping avatar May 06 '24 10:05 thewebscraping