traja
traja copied to clipboard
Python tools for spatial trajectory and time-series data analysis
Traja |Python-ver| |Travis| |PyPI| |Conda| |RTD| |Gitter| |Black| |License| |Binder| |Codecov| |DOI| |JOSS|
|Colab|
.. |Python-ver| image:: https://img.shields.io/badge/python-3.6+-blue.svg :target: https://www.python.org/downloads/release/python-360/ :alt: Python 3.6+
.. |Travis| image:: https://travis-ci.org/traja-team/traja.svg?branch=master :target: https://travis-ci.org/traja-team/traja
.. |PyPI| image:: https://badge.fury.io/py/traja.svg :target: https://badge.fury.io/py/traja
.. |Conda| image:: https://img.shields.io/conda/vn/conda-forge/traja.svg :target: https://anaconda.org/conda-forge/traja
.. |Gitter| image:: https://badges.gitter.im/traja-chat/community.svg :target: https://gitter.im/traja-chat/community
.. |RTD| image:: https://readthedocs.org/projects/traja/badge/?version=latest :target: https://traja.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status
.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/ambv/black
.. |License| image:: https://img.shields.io/badge/License-MIT-blue.svg :target: https://opensource.org/licenses/MIT :alt: License: MIT
.. |Binder| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/justinshenk/traja/master?filepath=demo.ipynb
.. |Codecov| image:: https://codecov.io/gh/traja-team/traja/branch/master/graph/badge.svg :target: https://codecov.io/gh/traja-team/traja
.. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5069231.svg :target: https://doi.org/10.5281/zenodo.5069231
.. |Colab| image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/github/justinshenk/traja/blob/master/demo.ipynb
.. |JOSS| image:: https://joss.theoj.org/papers/0f25dc08671e0ec54714f09597d116cb/status.svg :target: https://joss.theoj.org/papers/0f25dc08671e0ec54714f09597d116cb
Traja is a Python library for trajectory analysis. It extends the capability of pandas DataFrame specific for animal trajectory analysis in 2D, and provides convenient interfaces to other geometric analysis packages (eg, R and shapely).
Introduction
The traja Python package is a toolkit for the numerical characterization and analysis of the trajectories of moving animals. Trajectory analysis is applicable in fields as diverse as optimal foraging theory, migration, and behavioral mimicry (e.g. for verifying similarities in locomotion). A trajectory is simply a record of the path followed by a moving animal. Traja operates on trajectories in the form of a series of locations (as x, y coordinates) with times. Trajectories may be obtained by any method which provides this information, including manual tracking, radio telemetry, GPS tracking, and motion tracking from videos.
The goal of this package (and this document) is to aid biological researchers, who may not have extensive experience with Python, to analyze trajectories without being restricted by a limited knowledge of Python or programming. However, a basic understanding of Python is useful.
If you use traja in your publications, please cite the repo
.. code-block::
@software{justin_shenk_2019_3237827,
author = {Justin Shenk and
the Traja development team},
title = {justinshenk/traja},
month = jun,
year = 2019,
publisher = {Zenodo},
version = {latest},
doi = {10.5281/zenodo.3237827},
url = {https://doi.org/10.5281/zenodo.3237827}
}
Installation and setup
To install traja with conda, run
conda install -c conda-forge traja
or with pip
pip install traja
.
Import traja into your Python script or via the Python command-line with
import traja
.
Trajectories with traja
Traja stores trajectories in pandas DataFrames, allowing any pandas functions to be used.
Load trajectory with x, y and time coordinates:
.. code-block:: python
import traja
df = traja.read_file('coords.csv')
Once a DataFrame is loaded, use the .traja
accessor to access the
visualization and analysis methods:
.. code-block:: python
df.traja.plot(title='Cage trajectory')
Analyze Trajectory
.. csv-table:: The following functions are available via traja.trajectory.[method]
:header: "Function", "Description"
:widths: 30, 80
"calc_derivatives
", "Calculate derivatives of x, y values "
"calc_turn_angles
", "Calculate turn angles with regard to x-axis "
"transitions
", "Calculate first-order Markov model for transitions between grid bins"
"generate
", "Generate random walk"
"resample_time
", "Resample to consistent step_time intervals"
"rediscretize_points
", "Rediscretize points to given step length"
For up-to-date documentation, see https://traja.readthedocs.io <https://traja.readthedocs.io>
_.
Random walk
Generate random walks with
.. code-block:: python
df = traja.generate(n=1000, step_length=2)
df.traja.plot()
.. image:: https://raw.githubusercontent.com/justinshenk/traja/master/docs/source/_static/walk_screenshot.png :alt: walk_screenshot.png
Resample time
traja.trajectory.resample_time
allows resampling trajectories by a step_time
.
Flow Plotting
.. code-block:: python
df = traja.generate()
traja.plot_surface(df)
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_001.png :alt: 3D plot
.. code-block:: python
traja.plot_quiver(df, bins=32)
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_002.png :alt: quiver plot
.. code-block:: python
traja.plot_contour(df, filled=False, quiver=False, bins=32)
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_003.png :alt: contour plot
.. code-block:: python
traja.plot_contour(df, filled=False, quiver=False, bins=32)
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_004.png :alt: contour plot filled
.. code-block:: python
traja.plot_contour(df, bins=32, contourfplot_kws={'cmap':'coolwarm'})
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_005.png :alt: streamplot
Acknowledgements
traja code implementation and analytical methods (particularly
rediscretize_points
) are heavily inspired by Jim McLean's R package
trajr <https://github.com/JimMcL/trajr>
__. Many thanks to Jim for his
feedback.