tiga-dudu
tiga-dudu
> 这是啥问题啊 pip install Pillow==9.5.0
> so Wan Train produces way more quality you mean? Can you post prompt seed and comparison please? Hey, because the effect of main is not so good, because I...
> 这是一些非常巨大的差异 > > 您能提供我想尝试的基本图像吗 No problem, and I only reasoned for 20 steps, using 480P weights, and I did some logical processing on the input image. The code is...
> [@tiga-dudu](https://github.com/tiga-dudu) We carefully examined the code modifications during this period, and here are the possible reasons: > > * Custom Attention: You may have installed sage attention, which has...
> 这是正确的。由于我们仅使用PLCC损失来优化模型,因此训练的模型将旨在实现模型输出和地面实况分数之间的高PLCC值。这种方法并不能确保各个视频分数与其各自的地面实况值紧密匹配。为了使模型分数更易于理解,您可以使用四参数逻辑拟合函数 [y_output_logistic = fit_function(y_label, y_output) in util.py] 将模型分数映射到真值分数的尺度。 Hello author, since I'm using it for inference and I don't actually have y_label, how should I use fit_function(y_label, y_output)?
> 让我向你解释一下。 > > * 什么?`num_persistent_param_in_dit` > > 由于这个模型的巨大规模,我们必须使用逐层卸载方法来进行推理。但是,卸载会导致内存和 GPU 内存之间频繁通信,从而导致计算速度下降。因此,我们保留了参数 .当该参数设置为 1,000,000,000 时,大约 10 亿个模型参数将保留在 GPU 内存中,避免与系统内存通信。理论上,此值越大,需要的 GPU 内存就越多,但速度越快。`num_persistent_param_in_dit` > > * 速度有多大影响?`num_persistent_param_in_dit` > > 这个问题取决于内存和 GPU 内存之间的通信速度。对于高频多通道内存,通信速度相当快,因此对速度几乎没有明显影响。但是,对于配置稍小的计算机,影响更为显著。`num_persistent_param_in_dit` >...
Hey, can you help me? When I use wan_14b_image_to_video.py, I get an error: RuntimeError: The size of tensor a (4) must match the size of tensor b (3) at non-singleton...
> [@tiga-dudu](https://github.com/tiga-dudu) Can you provide your code here? Thanks, I have solved it. For png images, you need to convert them. `image = Image.open(img_path).convert("RGB")`