tensil
tensil copied to clipboard
Open source machine learning accelerators
Tensil
Tensil toolchain flow
Tutorials
For in-depth end-to-end instructions check our tutorials.
- Learn how to combine Tensil and TF-Lite to run YOLO on Ultra96
- Learn Tensil with ResNet and PYNQ Z1
- Learn Tensil with ResNet and Ultra96
- Learn how to build speech controlled robot with Tensil and Arty A7 - Part I
- Learn how to build speech controlled robot with Tensil and Arty A7 - Part II
- Getting Tensil to run ResNet at 300 FPS on ZCU104
Documentation
For reference documentation see our website.
Setup
- Pull and run Tensil docker container (see below);
- Download and install Xilinx Vitis or Vivado;
- Download and install Xilinx PYNQ for your FPGA development platform;
- Copy Tensil PYNQ driver
drivers/tcu_pynq
to/home/xilinx/tcu_pynq
on your FPGA development platform.
Pull and run docker container
docker pull tensilai/tensil
docker run -u $(id -u ${USER}):$(id -g ${USER}) -v $(pwd):/work -w /work -it tensilai/tensil bash
Compile AI/ML model
Compile AI/ML model (ResNet20 v2 CIFAR) for specific TCU architecture and FPGA development platform, PYNQ Z1 in this example.
From ONNX
tensil compile -a /demo/arch/pynqz1.tarch -m /demo/models/resnet20v2_cifar.onnx -o "Identity:0" -s true
From frozen TensorFlow graph
tensil compile -a /demo/arch/pynqz1.tarch -m /demo/models/resnet20v2_cifar.pb -o "Identity" -s true
Other ML frameworks are supported by converting to ONNX
Run bit accurate Tensil emulator
tensil emulate -m resnet20v2_cifar_onnx_pynqz1.tmodel -i /demo/models/data/resnet_input_1x32x32x8.csv
Make Verilog RTL
Make Verilog RTL for specific TCU architecture and FPGA development platform, PYNQ Z1 in this example.
tensil rtl -a /demo/arch/pynqz1.tarch -s true
Create Vivado design
Create Vivado design for specific FPGA development platform. We include detailed steps in our PYNQ Z1 tutorial. If you get stuck, we can help! Please reach out to us at [email protected] or in Discord.
Run AI/ML model on FPGA
Use PYNQ and Jupyter notebooks to run AI/ML model on FPGA. (See in notebooks
.)
For maintainers
Additional setup steps
- Download and install OpenJDK 11 from Azul;
- Download and install Verilator;
- Download test models:
wget https://github.com/tensil-ai/tensil-models/archive/main.tar.gz
tar xf main.tar.gz
mv tensil-models-main models
rm main.tar.gz
Run RTL tool from source code
./mill rtl.run -a ./arch/pynqz1.tarch -s true
Run compiler from source code
./mill compiler.run -a ./arch/pynqz1.tarch -m ./models/resnet20v2_cifar.onnx -o "Identity:0" -s true
Run emulator from source code
./mill emulator.run -m resnet20v2_cifar_onnx_pynqz1.tmodel -i ./models/data/resnet_input_1x32x32x8.csv
Run full test suite
./mill __.test -l org.scalatest.tags.Slow
To run a single RTL test in, for example, the Accumulator module, and also output a VCD file, do:
./mill rtl.test.testOnly tensil.tcu.AccumulatorSpec -- -DwriteVcd=true -z "should accumulate values"
View VCD files
To view the latest VCD file generated:
./scripts/gtkwave/display-latest-vcd.py
To view a specific VCD file:
./scripts/gtkwave/display-vcd.sh <vcd_file>
Build and push AWS ECS image for web compiler (Tensil Explorer)
docker build -f docker/web/Dockerfile -t tensil-web-compiler .
aws ecr get-login-password | docker login --username AWS --password-stdin <ACCOUNT ID>.dkr.ecr.<REGION>.amazonaws.com
docker tag tensil-web-compiler <ACCOUNT ID>.dkr.ecr.<REGION>.amazonaws.com/tf2rtl-web-compiler
docker push <ACCOUNT ID>.dkr.ecr.<REGION>.amazonaws.com/tf2rtl-web-compiler
Get help
- Say hello and ask a question on our Discord
- Email us at [email protected]