taojishou

Results 17 comments of taojishou

2022-09-18 23:22:49 | NEW | Input PID 0x0000 appeared (PAT) 2022-09-18 23:22:49 | *** | ERROR: Can't detect ECM pid. 2022-09-18 23:22:49 | NEW | Input PID 0x0610 appeared (PMT)...

./tsdecrypt --camd-proto NEWCAMD --camd-server 127.0.0.1:10100 --camd-user 1 --camd-pass 1 --camd-des-key 0102030405060708091011121314 --input 235.1.1.1:1234 --output 238.1.1.1:1234 --caid 0x0100 --ca-system SECA The same goes for the other CA encryption

![image](https://github.com/ultralytics/ultralytics/assets/20332592/00dbd232-116e-4531-a0b9-a8e032792d17) It seems to be ineffective, with the addition of int8 parameters, the model size has not changed much yolo export model=/home/tao/runs/detect/train9/weights/best.pt format=onnx int8=True

model.0.conv.weight 1 model.0.conv.bias 1 model.1.conv.weight 1 model.1.conv.bias 1 model.2.cv1.conv.weight 1 model.2.cv1.conv.bias 1 model.2.cv2.conv.weight 1 model.2.cv2.conv.bias 1 model.2.m.0.cv1.conv.weight 1 model.2.m.0.cv1.conv.bias 1 model.2.m.0.cv2.conv.weight 1 model.2.m.0.cv2.conv.bias 1 model.3.conv.weight 1 model.3.conv.bias 1 model.4.cv1.conv.weight 1...

when I output OpenVino format, it's ok

But I need Int8 quantization in onnx format~ not openvino format onnx Arguments imgsz, half, dynamic, simplify, opset, batch , no int8

Hope future support ONNX Int8 quantization with YOLOv8