Sneha Gupta

Results 13 comments of Sneha Gupta

@glenn-jocher Hi thanks for the quick response. I am not sure what you mean. where can i make this change? In the predict.py file under the segment folder?

From one of you response in previous question binary_mask = cv2.threshold(predicted_mask, 0.5, 1, cv2.THRESH_BINARY)[1] where can i get this predicted_mask...cause on runnning predict.py in output i am just getting img...

I did this but getting error in --> 17 results = model(img) 18 19 fig, ax = plt.subplots(figsize=(16, 12)) 2 frames [/content/yolov5/models/common.py](https://localhost:8080/#) in forward(self, im, augment, visualize) 542 def forward(self,...

Using cache found in /root/.cache/torch/hub/ultralytics_yolov5_master YOLOv5 🚀 v7.0-283-g875d9278 Python-3.10.12 torch-2.1.0+cu121 CUDA:0 (Tesla T4, 15102MiB) Fusing layers... Model summary: 165 layers, 7406513 parameters, 0 gradients, 25.7 GFLOPs WARNING ⚠️ YOLOv5 SegmentationModel...

on running this results(image) -RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 64 but got size 63 for tensor number 1 in the list.

Input tensor shape: torch.Size([1, 3, 500, 500])

I’m interested in this one.