squidpy
squidpy copied to clipboard
cellpose: how to extract features after segmentation
Hi,
I specified segmented_custom in the following code
sq.im.segment(img=img2, layer="image_smooth", channel=None, method=cellpose_he, channel_cellpose=0, flow_threshold=1)
#FINAL COUNTING
sq.im.calculate_image_features(
adata,
img2,
#layer="image",
layer=seg_layer,
#layer='segmented_watershed',
features="segmentation",
key_added="segmentation_features",
#https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops
features_kwargs={
"segmentation": {
"label_layer": "segmented_custom" ,
"props": ["label", "area",'bbox_area','convex_area','filled_area', "mean_intensity"],
"channels": [0],
}
},
mask_circle=True,
show_progress_bar=False,
n_jobs=8
)
to extract features, but most of the number of nuclei is zero, and contain missing values in other features. I wonder if the value in segmented_custom layer need to be modified in advance?
...
hi @WT215 I would check the output of the segmentation layer first, in order to see how many segmentations masks you have obtained, and whether they are of high quality