tensorflow-mnist-predict icon indicating copy to clipboard operation
tensorflow-mnist-predict copied to clipboard

Use TensorFlow to predict handwriting

Results 8 tensorflow-mnist-predict issues
Sort by recently updated
recently updated
newest added

Hello! I saw a really good code. I got a pull request because I had an error in my environment(windows10, tensorflow 1.9 gpu). Error found in file create_model_1.py and file...

Hello, I'm trying your scripts, but i can predict any numbers because when i run create_model1 or create_model2. They finish because they can't save the model. Here the error code...

Hello there, I am getting this error : ValueError : Parent directory of model.ckpt doesn't exist, can't save. With regards

I'm using Mac 10.13.3 Python 3.6.2 and i just installed tensorflow via pip.And i also installed relevant dependencies using pip.But when i ran the create_model_1.py some strange error happened. Below...

The prediction scripts fail for me with the following error: `NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: Failed to find any matching files for model.ckpt [[Node: save/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT],...

(working on predict_2.py) How can I give multiple images at once ? How can I visualize the final result of this in console ? How can I print/save the multiple...

I use spyder for run create_model_2.py and then used the predict_2. but it's get error with restore. I closed spyder and run predict_2 , this time it is run correct...

this is code: def predictint(imvalue): with tf.Graph().as_default(): def addlayer(input_data,insize,outsize,act_function=None): W=tf.Variable(tf.random_normal([insize,outsize])) b=tf.Variable(tf.zeros([outsize]))+0.1 out_data=tf.matmul(input_data,W)+b if act_function==None: return out_data elif act_function=="relu": return tf.nn.relu(out_data) elif act_function=="softmax": return tf.nn.softmax(out_data) else: return tf.nn.sigmoid(out_data) x_input=tf.placeholder(tf.float32,[None,784]) #y_input=tf.placeholder(tf.float32,[None,10]) l1=addlayer(x_input,784,64,act_function="relu")...