tensorflow-mnist-predict
tensorflow-mnist-predict copied to clipboard
When I use predict_2.py with a BP neural network model, why can not get a accuracy like train accuracy?
this is code: def predictint(imvalue):
with tf.Graph().as_default():
def addlayer(input_data,insize,outsize,act_function=None):
W=tf.Variable(tf.random_normal([insize,outsize]))
b=tf.Variable(tf.zeros([outsize]))+0.1
out_data=tf.matmul(input_data,W)+b
if act_function==None:
return out_data
elif act_function=="relu":
return tf.nn.relu(out_data)
elif act_function=="softmax":
return tf.nn.softmax(out_data)
else:
return tf.nn.sigmoid(out_data)
x_input=tf.placeholder(tf.float32,[None,784])
#y_input=tf.placeholder(tf.float32,[None,10])
l1=addlayer(x_input,784,64,act_function="relu")
l2=addlayer(l1,64,10,act_function="softmax")
init_op = tf.initialize_all_variables()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init_op)
saver.restore(sess, "./model.ckpt")
prediction=tf.argmax(l2,1)
return prediction.eval(feed_dict={x_input: [imvalue]}, session=sess)