JAVA
JAVA
I have the same problem. How can I solve it?
The problem is"'float' object cannot be interpreted as an integer" coords_x = x / img_size------→coords_x = x // img_size coords_y = y/img_size------→coords_y = y//img_size max_counter = len(train_set)/batch_size------→max_counter = len(train_set)//batch_size python2...
The same problem.
The same problem,
也是纠结了半天,他这个代码的loss基本不可训练,mAP基本也就是0,训练不起来。不知道啥毛病。
CHECKPOINT_PATH=./checkpoints/ssd_300_vgg.ckpt checkpoint_path=./checkpoints/vgg_16.ckpt This is the essence.
The author can't explain it.
same problem.
训练70个epoch,train_first_stage_epochs=20、train_second_stage_epochs=50,第70个epoch的mAP=79.23%,第16个epochd mAP=80.91%,感觉训练多了反而没用,就修改了一个参数,batch_size=4;请仓主帮忙解答一下哦,谢谢 @YunYang1994
这个代码貌似存在问题 self.conv = slim.conv2d(conv, 3, [3, 3], rate=self.dilate[6], activation_fn=None, weights_regularizer=slim.l2_regularizer(self.hps.weight_decay_rate), scope='conv_%d'%(self.hps.num_conv), reuse=self.reuse) self.clear = self._image - self.conv 那么问题来了,计算损失的时候用self.conv 这个应该是噪声图像,计算结果的时候用model.clear,自相矛盾 content_cost = (1./self.hps.batch_size)*tf.nn.l2_loss(self.conv - self.label) tf_psnr = tf.image.psnr(labels, model.clear, 1.)