michaelzfm

Results 6 comments of michaelzfm

Thank you for replaying. I trained on imagenet with cfg.DATASET.CAM_NUMBER_THRES=100 but not got the error rates 56.87 offered in the paper, I'm looking forward to the config files of imagnet...

执行代码就是您提供的demo代码: import torch from PIL import Image import cn_clip.clip as clip from cn_clip.clip import load_from_name, available_models print("Available models:", available_models()) # Available models: ['ViT-B-16', 'ViT-L-14', 'ViT-L-14-336', 'ViT-H-14', 'RN50'] device = "cuda"...

设置为cpu也一样,加入model=model.float()也一样,python=3.10,nvidia-smi 的cuda是11.7

load_from_model里面并没有vision_model_name这个参数,我自己修改了load_from_name函数,从本地加载模型一样会出现nan

请问你是在win上测的还是linux,我在win上测是正常的,但是linux会出问题

已经找到原因,感谢!另一个问题,请问cnclip用的分词器是哪个,我在接上stablediffusion用stabeldiffusionpipeline来做text2img的时候报错,cnclip的tokenizer无法被兼容