María Inés de Frutos-Fernández

Results 9 issues of María Inés de Frutos-Fernández

If `A` is an algebra over `R`, so is the `uniform_space.completion` of `A`. --- - [x] depends on: #14846 [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/from-referrer/)

delegated
t-topology
t-algebra

We define structures `ring_seminorm` and `ring_norm`. These definitions are useful when one needs to consider multiple (semi)norms on a given ring. --- [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/from-referrer/)

delegated
t-analysis

We define the finite adèle ring of a Dedekind domain and show that it is a commutative ring. --- [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/from-referrer/)

awaiting-review

--- [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/from-referrer/)

WIP
t-analysis

--- [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/from-referrer/)

delegated
merge-conflict
t-algebra

We add the class `ContinuousAlgHom` for continuous algebra homomorphisms. Co-authored-by: Antoine Chambert-Loir --- [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/from-referrer/)

awaiting-review
t-topology
t-algebra

We prove [BGR, Proposition 1.3.2/1][bosch-guntzer-remmert] : if `f` is a nonarchimedean seminorm on `R`, then `iInf (λ (n : pnat), (f(x^(n : ℕ)))^(1/(n : ℝ)))` is a power-multiplicative nonarchimedean seminorm...

blocked-by-other-PR
t-number-theory
t-analysis

Lemmas about limsup and bddAbove needed for #15373. --- [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/from-referrer/)

awaiting-author
t-analysis

These lemmas have one-line proofs, but I use them enough times in #15373 that I think it makes sense to introduce them. --- [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/from-referrer/)

delegated
t-algebra