lvchigo
lvchigo
- centos7.6 - xlearning-gpu-1.3 - hadoop3.1.0 - when i check xlearning gpu example like this: `$XLEARNING_HOME/bin/xl-submit \ --app-type "tensorflow" \ --app-name "tf-demo" \ --input /tmp/data/tensorflow#data \ --output /tmp/tensorflow_model#model \ --files...
使用PoseEstimation训练框架训练出模型,并通过以下代码段转换为frozen-pb模型; `# Convert to frozen pb. cd training python3 src/gen_frozen_pb.py \ --checkpoint=/model-xxx --output_graph=/model-xxx.pb \ --size=192 --model=mv2_cpm_2` 然而,将frozen-pb模型转换为MACE模型后,并通过以下代码段进行MACE模型校验: `python tools/converter.py run --config=mace_new/builds/downloads/test.yml --validate` 校验时,报warning如下: `Generate input file: builds/testSrcFrozen/_tmp/frozen_src/99da42816155dfdcf80ef3ba3a67028b/general/arm64-v8a/model_input_image Generate input file...
From this(PoseEstimationForMobile/training/src/networks.py) file ,we just can see mv2_cpm config. So, how to train hourglass model?? ` import network_mv2_cpm def get_network(type, input, trainable=True): if type == 'mv2_cpm': net, loss = network_mv2_cpm.build_network(input,...
- When generate pb file, we use this command: ` python freeze.py --num_classes 12 --checkpoint_path work/v1/TCResNet8Model-1.0/mfcc_40_3010_0.001_mom_l1/TCResNet8Model-30000 --output_name softmax --preprocess_method no_preprocessing --height 49 --width 40 --channels 1 TCResNet8Model --width_multiplier 1.0 `...