liuzhiyong01

Results 8 issues of liuzhiyong01

The code in the file's wgan_conv has little error: the class G_conv generate [-1, 32, 32, 1] shape of inputs, but class D_conv's input is [-1, 28, 28, 1],the dimension...

hparams.logger.info("split connect") if idx != len(hparams.cross_layer_sizes) - 1: next_hidden, direct_connect = tf.split(curr_out, 2 * [int(layer_size / 2)], 1) final_len += int(layer_size / 2) else: direct_connect = curr_out next_hidden = 0...

![image](https://user-images.githubusercontent.com/13724286/232206508-a702748c-3537-43fc-9755-e73ed1131fa6.png) ![image](https://user-images.githubusercontent.com/13724286/232206537-24ffaccd-fb5a-4958-a8fd-15a99095bfcb.png) My environments setting: deepspeed==0.9.0, torch==2.0.0+cu117 CUDA Version: 11.0 pretrained model is facebook/opt-350m Who can help me solve this problem? Thanks

bug
deespeed chat

您好,想请教一下,finetue bge-m3模型与finetune bge系列模型区别有什么区别吗?对数据量有什么控制要求吗?finetune的step控制多少比较合适?finetue bge-m3的脚本与finetune bge模型的脚本一样吗?

python script: selected_mixture = seqio.get_mixture_or_task('ag_news_subset_template_0_five_shot') INPUT_SEQ_LEN = 2056 TARGET_SEQ_LEN = 512 dataset = selected_mixture.get_dataset( sequence_length={"inputs": INPUT_SEQ_LEN, "targets": TARGET_SEQ_LEN}, # split="train", shuffle=True, num_epochs=1, # shard_info=seqio.ShardInfo(index=0, num_shards=10), use_cached=False, seed=42 ) for i,...

我使用的是下面这个训练好的adpter文件,但inference的结果与github主页结果差异比较大 ![image](https://github.com/PhoebusSi/Alpaca-CoT/assets/13724286/c24dde08-cad4-4f92-a2ec-37191bcbf17b) 使用的是generate.py文件,没有修改generate参数 ![image](https://github.com/PhoebusSi/Alpaca-CoT/assets/13724286/4885d4f0-b98a-41b9-bcee-8f319359f8d8) 红色方框的是结果: ![image](https://github.com/PhoebusSi/Alpaca-CoT/assets/13724286/a4b7f375-0362-4ae5-8054-cdef3c04b1df) github上的结果: ![image](https://github.com/PhoebusSi/Alpaca-CoT/assets/13724286/f8c0e562-7fc2-487b-9881-d88a5aca8b7d) 请问一下,这个差异点在哪?麻烦帮忙回答一下, 非常感谢!

## Bug Description when i use torch_tensorrt.compile transformer module with dynamic_shapes, it will occur this error, ## To Reproduce def test_compile_v1(): model = AutoModel.from_pretrained('bert-base-case', use_cache=False) # Enabled precision for TensorRT...

bug