ComputerVisionReadingList
ComputerVisionReadingList copied to clipboard
My reading list for topics in Computer Vision
ComputerVisionReadingList
My reading list for topics in Computer Vision
This list is divided into two main sections, viz. Geometry-based Methods in Vision and Learning-based Methods in Vision.
Research Papers
SfM
- Multi-stage SfM: A Coarse-to-Fine Approach for 3D Reconstruction
- Metrics for 3D Rotation: Comparison and Analysis
- Analyzing 3D Objects in Cluttered Images - NRSfM applied on Cars
- NRSfM Tutorial
- Shape and motion from image streams under orthography: A factorization method - Seminal Work on Factorization based Approaches for Structure Recovery
- Recovering non-rigid 3D shape from image streams - Seminal work on representing non-rigid structure as a combination of basis
Geometry-based Methods in Vision
Course Materials
Learning-based Methods in Vision
Review Notes
Books
-
[Computer Vision: Models, Learning, and Inference] (http://web4.cs.ucl.ac.uk/staff/s.prince/book/book.pdf)
-
[Computer Vision: Models, Learning, and Inference (Algorithms Booklet)] (http://www0.cs.ucl.ac.uk/external/s.prince/book/Algorithms.pdf)
-
[Computer Vision: Models, Learning, and Inference (Answers Booklet for Students)] (http://www0.cs.ucl.ac.uk/external/s.prince/book/AnswerBookletStudents.pdf)
Lecture Notes
Gaussian Mixture Models and EM
- Robert Collin's lectures
a. [Gaussian Mixtures and the EM Algorithm] (http://www.cse.psu.edu/~rtc12/CSE586/lectures/EMLectureFeb3.pdf)
b. [EM Clarification] (http://www.cse.psu.edu/~rtc12/CSE586/lectures/EMclarifyPXZ.pdf)
c. [EM Derivation, Proof that EM works] (http://www.cse.psu.edu/~rtc12/CSE586/lectures/cse586emDerivation.pdf)
d. [GMM and K-Means] (http://www.cse.psu.edu/~rtc12/CSE586/lectures/cse586gmmemPart1.pdf)
e. [GMM and EM Intro] (http://www.cse.psu.edu/~rtc12/CSE586/lectures/cse586gmmemPart2.pdf)
f. [Mixture of Gaussians Lecture] (http://www.cse.psu.edu/~rtc12/CSE586/lectures/lectureMixGauIntro.pdf)
-
[Mixture of Gaussians Tutorial - Reynolds] (http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/GMM_Tutorial_Reynolds.pdf)
-
[Mixture Models and the EM Algorithm - C. Bishop] (http://mlg.eng.cam.ac.uk/tutorials/06/cb.pdf)
-
[Estimating Gaussian Mixture Densities with EM: A Tutorial - Tomasi] (http://www.cse.psu.edu/~rtc12/CSE586/papers/emTomasiTutorial.pdf)
-
[A Short Tutorial on GMMs] (http://www.computerrobotvision.org/2010/tutorial_day/GMM_said_crv10_tutorial.pdf)
-
[A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for GMMs and HMMs] (http://lasa.epfl.ch/teaching/lectures/ML_Phd/Notes/GP-GMM.pdf)
-
[Tutorial on Mixture Models] (http://www.homepages.ucl.ac.uk/~ucakche/presentations/cladagtutorial.pdf)
-
[Mixture Models and EM] (http://www.cs.toronto.edu/~kyros/courses/2503/Handouts/mixtureModel.pdf)
-
[Mixture of Gaussians Tutorial] (https://www.spsc.tugraz.at/system/files/mixtgaussian.pdf)
-
[An Introduction to Mixture Models - Frank Picard] (http://www.informatica.uniroma2.it/upload/2009/IM/mixture-tutorial.pdf)
-
[Mixture Models] (http://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch20.pdf)
-
[A Unifying Review of Linear Gaussian Models] (http://mlg.eng.cam.ac.uk/zoubin/papers/lds.pdf)
Introduction to Graphical Models
- Robert Collin's lectures
a. [Introduction to Graphical Models, Belief Propagation] (http://www.cse.psu.edu/~rtc12/CSE586/lectures/cse586GMplusMP.pdf)