kksasa
kksasa
如何保持模型在内存中或立即卸载? 默认情况下,模型在内存中保留5分钟后会被卸载。这样做可以在您频繁请求LLM时获得更快的响应时间。但是,您可能希望在5分钟结束之前释放内存或无限期保持模型加载。使用/api/generate和/api/chat API端点的keep_alive参数来控制模型在内存中保留的时间。 keep_alive参数可以设置为: 一个持续时间字符串(例如"10m"或"24h") 一个以秒为单位的数字(例如3600) 任何负数,将会无限期保持模型在内存中(例如-1或"-1m") '0',将在生成响应后立即卸载模型 例如,要预加载模型并保留在内存中,请使用 curl -d '{"model": "llama3", "keep_alive": -1}' 要卸载模型并释放内存,请使用: curl -d '{"model": "llama3", "keep_alive": 0}' 或者,您可以通过在启动Ollama服务器时设置 OLLAMA_KEEP_ALIVE 环境变量来更改所有模型加载到内存中的时间。OLLAMA_KEEP_ALIVE 变量采用与上述keep_alive参数相同的参数类型。请参考上述说明如何配置Ollama服务器以正确设置环境变量。 如果您想覆盖 OLLAMA_KEEP_ALIVE 设置,可以在/api/generate或/api/chat API端点使用...
faced same issue too
if someone can run ollama for graphrag. Please share the steps to us :)
Confused me as well. How does graphrag for db management. such as add/insert/delete
marked it for the answer
> Gradio itself (which Kotaemon is built upon) provide automated API wrapper. See https://www.gradio.app/guides/getting-started-with-the-python-client. > > Here is a quick code snippet that you can try. (with Kotaemon running in...
> > Gradio itself (which Kotaemon is built upon) provide automated API wrapper. See https://www.gradio.app/guides/getting-started-with-the-python-client. > > Here is a quick code snippet that you can try. (with Kotaemon running...
no , it is not a real stream, just print all output from list..
> To use streaming mode, https://www.gradio.app/guides/getting-started-with-the-python-client#generator-endpoints may be this can help. We have not test this API in detail so you would have to perform experiments yourself. Thanks for the...
I got the same, but I downloaded user installer app (https://github.com/Cinnamon/kotaemon/releases) to run sctipt to install ENV then in vs code I changed to env = kotaemon-app\install_dir\env