form2fit icon indicating copy to clipboard operation
form2fit copied to clipboard

[ICRA 2020] Train generalizable policies for kit assembly with self-supervised dense correspondence learning.

Form2Fit

Code for the paper

Form2Fit: Learning Shape Priors for Generalizable Assembly from Disassembly
Kevin Zakka, Andy Zeng, Johnny Lee, Shuran Song
arxiv.org/abs/1910.13675
ICRA 2020

Drawing

This repository contains:

  • The Form2Fit Benchmark
    • Code to download and process the benchmark datasets.
    • Code to evaluate any model's performance on the benchmark test set.
  • Code to reproduce the paper results:
    • Architectures, dataloaders and losses for suction, place and matching networks.
    • Planner module for intergrating all the outputs.
    • Baseline implementation.

If you find this code useful, consider citing our work:

@inproceedings{zakka2020form2fit,
  title={Form2Fit: Learning Shape Priors for Generalizable Assembly from Disassembly},
  author={Zakka, Kevin and Zeng, Andy and Lee, Johnny and Song, Shuran},
  booktitle={Proceedings of the IEEE International Conference on Robotics and Automation},
  year={2020}
}

Documentation

  • setup
  • about the Form2Fit benchmark
  • reproducing paper results
  • evaluating a trained model
  • model weights
  • conventions

Todos

  • [ ] Add processed generalization partition (combinations, mixtures and unseen) to benchmark.
  • [ ] Add code for training the different networks.

Note

This is not an officially supported Google product.