DPT
DPT copied to clipboard
Errors while tracing dpt_beit_large_384.pt
I got the following errors when tracing "dpt_beit_large_384.pt".
Any help?
Traceback (most recent call last):
File "/work/gitee/MiDaS-cpp/python/export_model.py", line 162, in <module>
convert(in_model_type, in_model_path, out_model_path)
File "/work/gitee/MiDaS-cpp/python/export_model.py", line 84, in convert
sm = torch.jit.trace(model, sample, strict=False)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/eli/.local/lib/python3.11/site-packages/torch/jit/_trace.py", line 794, in trace
return trace_module(
^^^^^^^^^^^^^
File "/home/eli/.local/lib/python3.11/site-packages/torch/jit/_trace.py", line 1084, in trace_module
_check_trace(
File "/home/eli/.local/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/eli/.local/lib/python3.11/site-packages/torch/jit/_trace.py", line 562, in _check_trace
raise TracingCheckError(*diag_info)
torch.jit._trace.TracingCheckError: Tracing failed sanity checks!
ERROR: Graphs differed across invocations!
Graph diff:
graph(%self.1 : __torch__.midas.dpt_depth.DPTDepthModel,
%x.1 : Tensor):
%scratch : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="scratch"](%self.1)
%output_conv : __torch__.torch.nn.modules.container.Sequential = prim::GetAttr[name="output_conv"](%scratch)
%scratch.15 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="scratch"](%self.1)
%refinenet1 : __torch__.midas.blocks.FeatureFusionBlock_custom = prim::GetAttr[name="refinenet1"](%scratch.15)
%scratch.13 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="scratch"](%self.1)
%refinenet2 : __torch__.midas.blocks.FeatureFusionBlock_custom = prim::GetAttr[name="refinenet2"](%scratch.13)
%scratch.11 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="scratch"](%self.1)
%refinenet3 : __torch__.midas.blocks.FeatureFusionBlock_custom = prim::GetAttr[name="refinenet3"](%scratch.11)
%scratch.9 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="scratch"](%self.1)
%refinenet4 : __torch__.midas.blocks.FeatureFusionBlock_custom = prim::GetAttr[name="refinenet4"](%scratch.9)
%scratch.7 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="scratch"](%self.1)
%layer4_rn : __torch__.torch.nn.modules.conv.Conv2d = prim::GetAttr[name="layer4_rn"](%scratch.7)
%scratch.5 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="scratch"](%self.1)
%layer3_rn : __torch__.torch.nn.modules.conv.Conv2d = prim::GetAttr[name="layer3_rn"](%scratch.5)
%scratch.3 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="scratch"](%self.1)
%layer2_rn : __torch__.torch.nn.modules.conv.Conv2d = prim::GetAttr[name="layer2_rn"](%scratch.3)
%scratch.1 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="scratch"](%self.1)
%layer1_rn : __torch__.torch.nn.modules.conv.Conv2d = prim::GetAttr[name="layer1_rn"](%scratch.1)
%pretrained : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="pretrained"](%self.1)
%act_postprocess4 : __torch__.torch.nn.modules.container.Sequential = prim::GetAttr[name="act_postprocess4"](%pretrained)
%_4.7 : __torch__.torch.nn.modules.conv.Conv2d = prim::GetAttr[name="4"](%act_postprocess4)
%pretrained.83 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="pretrained"](%self.1)
%act_postprocess4.5 : __torch__.torch.nn.modules.container.Sequential = prim::GetAttr[name="act_postprocess4"](%pretrained.83)
%_3.9 : __torch__.torch.nn.modules.conv.Conv2d = prim::GetAttr[name="3"](%act_postprocess4.5)
%pretrained.81 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="pretrained"](%self.1)
%act_postprocess3 : __torch__.torch.nn.modules.container.Sequential = prim::GetAttr[name="act_postprocess3"](%pretrained.81)