Stereo-3D-Reconstruction
Stereo-3D-Reconstruction copied to clipboard
Implementation of "Toward 3D Object Reconstruction from Stereo Images" (Xie et al., Neurocomputing 2021)
Stereo 3D Reconstruction
This repository contains the source code for the paper Toward 3D Object Reconstruction from Stereo Images.
Important Note: The source code is in the (Stereo2Voxel/Stereo2Point) branches of the repository.
Cite this work
@article{xie2021towards,
title={Toward 3D Object Reconstruction from Stereo Images},
author={Xie, Haozhe and
Tong, Xiaojun and
Yao, Hongxun and
Zhou, Shangchen and
Zhang, Shengping and
Sun, Wenxiu},
journal={Neurocomputing},
year={2021}
}
Datasets
We use the StereoShapeNet dataset in our experiments, which is available below:
Pretrained Models
The pretrained models on StereoShapeNet are available as follows:
- Stereo2Voxel for StereoShapeNet (309 MB)
- Stereo2Point for StereoShapeNet (356 MB)
Prerequisites
Clone the Code Repository
git clone https://github.com/hzxie/Stereo-3D-Reconstruction.git
Install Python Denpendencies
cd Stereo-3D-Reconstruction
pip install -r requirements.txt
Train/Test Stereo2Voxel
git checkout Stereo2Voxel
Train/Test Stereo2Point
git checkout Stereo2Point
cd extensions/chamfer_dist
python setup.py install --user
Update Settings in config.py
You need to update the file path of the datasets:
__C.DATASETS.SHAPENET.LEFT_RENDERING_PATH = '/path/to/ShapeNetStereoRendering/%s/%s/render_%02d_l.png'
__C.DATASETS.SHAPENET.RIGHT_RENDERING_PATH = '/path/to/ShapeNetStereoRendering/%s/%s/render_%02d_r.png'
__C.DATASETS.SHAPENET.LEFT_DISP_PATH = '/path/to/ShapeNetStereoRendering/%s/%s/disp_%02d_l.exr'
__C.DATASETS.SHAPENET.RIGHT_DISP_PATH = '/path/to/ShapeNetStereoRendering/%s/%s/disp_%02d_r.exr'
__C.DATASETS.SHAPENET.VOLUME_PATH = '/path/to/ShapeNetVox32/%s/%s.mat'
Get Started
To train GRNet, you can simply use the following command:
python3 runner.py
To test GRNet, you can use the following command:
python3 runner.py --test --weights=/path/to/pretrained/model.pth
License
This project is open sourced under MIT license.