huangzicheng
huangzicheng
I solve this problem , change it with: model_dict = dict({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), }) torch.save(model_dict, os.path.join(args.save_dir, save_prefix+'_'+repr(epoch)+'.pth'))

> I want to use CornerNet-Lite to detect new classes (not involved in COCO classes) on my own dataset, how can I do this? Or you can write it on...
原因找到啦:不能直接pip install apex 卸载从源码安装 pip uninstall apex git clone https://www.github.com/nvidia/apex cd apex python setup.py install
Group =s , 分组操作使得卷积核为原来的channel/s, 代码里面的裁剪通道还是channel, 比如(input=256,output=256, group=2)其实只有128个卷积通道, 代码里面的out of range
I want to speed up the real-time processing speed, detect a frame of about 5-10fps, track a frame of about 80fps, there are two ways of tracking, track_with_detect and track_without_detect,...