HelinLin

Results 11 comments of HelinLin

The dataset I am using is CIFAR10, and the model is NVIDIA_ Efficientnet_ B0, the model is loaded using the following code:def load_efficientnet(entrypoint: str = "nvidia_efficientnet_b0", classes: int = None):...

how to resolve: do not use NVIDIA_ Efficientnet_ B0,this model will generate too large l2 norm,use alexnet or other model to replace,do not use NVIDIA_ Efficientnet_ B0!!!!

> Hi @dr4g0n7ly , are you still seeing this error? if so, could you tell us what platform do you use (windows, linux, mac) look like windows,i think you shoud...

在flwr/server/server.py的代码里好像有地方可以修改,但是也需要改代码

> > 在flwr/server/server.py的代码里好像有地方可以修改,但是也需要改代码 > > 是的,但是不知道怎么修改这个策略 ,现在我看都是一个固定值,没法和训练轮数挂钩。 我现在能想到的方法就是写两个模拟函数fl.simulation.start_simulation,比如前10epochs,客户端选择10个;后10个epochs训练再启动一个模拟函数,选择20个客户端,他的模型参数用第一次训练的参数。 感觉你这个方法也可以,或者你可以试试把fraction_fit这个值从某个配置文件(比如/opt/fraction_fit.txt)中读取,然后在训练10轮以后修改/opt/fraction_fit.txt的内容,然后server.py再去读取这个内容?我不太确定server的启动是不是每轮都会重新分配一下,你可以试试

> > > > 在flwr/server/server.py的代码里好像有地方可以修改,但是也需要改代码 > > > > > > > > > 是的,但是不知道怎么修改这个策略 ,现在我看都是一个固定值,没法和训练轮数挂钩。 我现在能想到的方法就是写两个模拟函数fl.simulation.start_simulation,比如前10epochs,客户端选择10个;后10个epochs训练再启动一个模拟函数,选择20个客户端,他的模型参数用第一次训练的参数。 > > > > > > 感觉你这个方法也可以,或者你可以试试把fraction_fit这个值从某个配置文件(比如/opt/fraction_fit.txt)中读取,然后在训练10轮以后修改/opt/fraction_fit.txt的内容,然后server.py再去读取这个内容?我不太确定server的启动是不是每轮都会重新分配一下,你可以试试 > > 好的我试一试,我刚刚看到一个参数on_fit_config_fn ,感觉可能解决这个问题 ![image](https://private-user-images.githubusercontent.com/41562415/295165991-63b47579-27a0-4516-912d-4d8f1053428c.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDQ3OTQwNjUsIm5iZiI6MTcwNDc5Mzc2NSwicGF0aCI6Ii80MTU2MjQxNS8yOTUxNjU5OTEtNjNiNDc1NzktMjdhMC00NTE2LTkxMmQtNGQ4ZjEwNTM0MjhjLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNDAxMDklMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjQwMTA5VDA5NDkyNVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTk1YmUwYzg4NzBmMGU4MjBmZjNlNTI0OTQyZWNlYmEzMDljY2JiYjEzNzFhYTk0MjZhM2JlMzgzMTQ1ZmE2ZjUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0JmFjdG9yX2lkPTAma2V5X2lkPTAmcmVwb19pZD0wIn0.0VotMCkNkRFdOvJB-PlkHgMYnlIq-cy7xqght7SQEow) ![image](https://private-user-images.githubusercontent.com/41562415/295166231-87e7de98-4ceb-4cd9-8f7a-72ab990b19ce.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDQ3OTQwNjUsIm5iZiI6MTcwNDc5Mzc2NSwicGF0aCI6Ii80MTU2MjQxNS8yOTUxNjYyMzEtODdlN2RlOTgtNGNlYi00Y2Q5LThmN2EtNzJhYjk5MGIxOWNlLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNDAxMDklMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjQwMTA5VDA5NDkyNVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTNkYTYyYTk2ZDk4YzUxY2YzZjRiMTRlZWQ0MjU4N2I0ODcxMWNhOTI5OWZjNjExMmQ1Mjk3MmIxZGZmZjFiNzYmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0JmFjdG9yX2lkPTAma2V5X2lkPTAmcmVwb19pZD0wIn0.HUV9qDbmheZw8RUSNWvn5MOxxOh5TCFaDLL21C45mQ8)...

> 如果启动了flower server后,客户端一直没有连接,可以手动停止server吗? 你具体是指什么?启动服务端后再启动客户端,客户端连不上服务端的话,当然是可以手动停止server的,停止了以后你再去排查一下你的代码哪里不对导致客户端连不上

I am addressing this issue: https://github.com/adap/flower/pull/2782. Due to the fact that `efficientnet` is particularly sensitive to noise, it is recommended to use `alexnet`, `imagenet-based` models, or other alternatives for implementing...

> I have the same problem, is there a solution? 你别用他自带的那个模型,你换个模型就行了,比如alexnet或者resnet模型就没这个毛病

> The model I chose is my own model that is there about time prediction and didn't use the one he comes with and still this problem occurs. some models...