bev_pooling.py中的一些困惑
你好,我想问一下,第一个的网格生成不加x_stride / 2是为什么?(我尝试过,好像是报错,但能不能手动设置为70.6?)
第二个是ben_align里的,我看论文的理解是生成的网格点grid是一开始是和rot_num=0对齐的,那不是应该先back-forward到最初状态,然后for-ward到当前的rot_num吗?主要是我不是很理解grid通过for-ward到当前,然后又back-forwar到rot_num=0。
我也是对这个很有疑惑,逻辑上讲不通的感觉,你想明白了吗
@Liu202209 你调整完后还能复现吗,我调整完后反而不能复现了, Car [email protected], 0.70, 0.70: bbox AP:96.6737, 89.8503, 89.5701 bev AP:90.2488, 88.5818, 88.2505 3d AP:89.5764, 84.6657, 84.8719 aos AP:96.65, 89.78, 89.43 Car [email protected], 0.70, 0.70: bbox AP:98.2332, 95.1310, 94.8786 bev AP:93.4819, 91.5662, 91.3079 3d AP:92.6654, 85.8230, 85.2598 aos AP:98.22, 95.02, 94.68 Car [email protected], 0.50, 0.50: bbox AP:96.6737, 89.8503, 89.5701 bev AP:96.8002, 95.4559, 95.8603 3d AP:96.7524, 95.3898, 89.5401 aos AP:96.65, 89.78, 89.43 Car [email protected], 0.50, 0.50: bbox AP:98.2332, 95.1310, 94.8786 bev AP:98.3109, 97.2066, 96.7604 3d AP:98.1812, 97.1175, 94.9565 aos AP:98.22, 95.02, 94.68 调整之前是: Car [email protected], 0.70, 0.70: bbox AP:96.5080, 95.3536, 89.6044 bev AP:90.2641, 88.6183, 88.1891 3d AP:89.5928, 85.1168, 84.5518 aos AP:96.48, 95.11, 89.36 Car [email protected], 0.70, 0.70: bbox AP:98.4402, 96.9759, 94.8656 bev AP:95.2964, 91.5174, 91.1605 3d AP:92.4918, 87.2046, 84.8723 aos AP:98.42, 96.74, 94.54 Car [email protected], 0.50, 0.50: bbox AP:96.5080, 95.3536, 89.6044 bev AP:96.6327, 95.3379, 95.7173 3d AP:96.5853, 95.2708, 89.5656 aos AP:96.48, 95.11, 89.36 Car [email protected], 0.50, 0.50: bbox AP:98.4402, 96.9759, 94.8656 bev AP:98.5412, 97.1972, 96.6906 3d AP:98.5224, 97.1264, 94.9059 aos AP:98.42, 96.74, 94.54
我没去复现他的单类别,我一直在弄多类别的(拿其他问题里出现的训练文件),我的调整完之后好像是差不多或者说更好一点,这两种情况都出现过,但是一直都没达到论文的精度
@Liu202209 我觉得这个对小目标的影响还是很大的 毕竟最后的spatial_feature对应的物理尺寸是8*0.05=0.4 cyclist 和 pedestrian的anchor尺寸也不过是[ 1.76, 0.6, 1.73 ]和[ 0.8, 0.6, 1.73 ] (顺序为lwh) 我多类别调整前的结果是 Car [email protected], 0.70, 0.70: bbox AP:98.1120, 94.6818, 89.4393 bev AP:90.4446, 88.7608, 88.0496 3d AP:89.7993, 84.5134, 79.0701 aos AP:98.05, 94.33, 89.03 Car [email protected], 0.70, 0.70: bbox AP:99.2606, 96.6115, 94.4560 bev AP:96.2373, 91.5180, 90.8619 3d AP:93.0486, 85.7471, 82.7864 aos AP:99.20, 96.26, 93.94 Car [email protected], 0.50, 0.50: bbox AP:98.1120, 94.6818, 89.4393 bev AP:98.1685, 94.6936, 94.8741 3d AP:98.1228, 94.6105, 94.7638 aos AP:98.05, 94.33, 89.03 Car [email protected], 0.50, 0.50: bbox AP:99.2606, 96.6115, 94.4560 bev AP:99.2534, 97.0615, 96.3965 3d AP:99.2321, 96.9621, 96.0263 aos AP:99.20, 96.26, 93.94 Pedestrian [email protected], 0.50, 0.50: bbox AP:71.8137, 68.6167, 64.1738 bev AP:68.8230, 62.4224, 57.9408 3d AP:66.8895, 59.6249, 54.6192 aos AP:64.34, 60.21, 56.02 Pedestrian [email protected], 0.50, 0.50: bbox AP:73.4976, 69.0069, 64.2983 bev AP:68.9243, 62.4818, 57.1502 3d AP:66.3551, 59.7461, 53.9324 aos AP:64.94, 59.82, 55.25 Pedestrian [email protected], 0.25, 0.25: bbox AP:71.8137, 68.6167, 64.1738 bev AP:77.2878, 73.9435, 68.0667 3d AP:77.2714, 73.5384, 67.9978 aos AP:64.34, 60.21, 56.02 Pedestrian [email protected], 0.25, 0.25: bbox AP:73.4976, 69.0069, 64.2983 bev AP:77.6491, 74.5224, 69.3100 3d AP:77.6281, 74.3388, 69.1776 aos AP:64.94, 59.82, 55.25 Cyclist [email protected], 0.50, 0.50: bbox AP:89.1586, 84.9098, 80.2125 bev AP:87.6822, 74.4189, 70.8076 3d AP:87.1630, 73.2488, 68.7283 aos AP:89.00, 82.43, 77.96 Cyclist [email protected], 0.50, 0.50: bbox AP:93.6607, 86.8252, 82.0402 bev AP:91.8447, 76.1573, 71.6144 3d AP:91.1589, 74.3207, 69.2800 aos AP:93.47, 84.20, 79.53 Cyclist [email protected], 0.25, 0.25: bbox AP:89.1586, 84.9098, 80.2125 bev AP:88.2267, 81.6565, 76.8107 3d AP:88.2267, 81.6565, 76.8107 aos AP:89.00, 82.43, 77.96 Cyclist [email protected], 0.25, 0.25: bbox AP:93.6607, 86.8252, 82.0402 bev AP:92.5861, 83.1353, 78.2893 3d AP:92.5861, 83.1353, 78.2893 aos AP:93.47, 84.20, 79.53 (rtx4090 x 4 per_gpu_batch ==2) 行人这一项差距蛮大的其实,我认为bev-align那一项影响会不小
单类别训练Car确实可以达到文章的精度,多类别感觉达不到了
@csjxchen
为什么我训练cyclist[ 1.76, 0.6, 1.73 ]和pedestrian[ 0.8, 0.6, 1.73 ]的所有精度都是0
Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00
请问哪个参数设置需要注意的么
CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist'] DATA_CONFIG: BASE_CONFIG: cfgs/dataset_configs/kitti_dataset.yaml DATASET: 'KittiDataset' ROT_NUM: 3 USE_VAN: True
DATA_SPLIT: {
'train': train,
'test': val
}
INFO_PATH: {
'train': [kitti_infos_train.pkl],
'test': [kitti_infos_val.pkl],
}
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
- NAME: gt_sampling
USE_ROAD_PLANE: True
DB_INFO_PATH:
- kitti_dbinfos_train.pkl
PREPARE: {
filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Cyclist:5'],
filter_by_difficulty: [-1],
}
SAMPLE_GROUPS: ['Car:15', 'Pedestrian:10', 'Cyclist:10']
NUM_POINT_FEATURES: 4
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, -0.2]
LIMIT_WHOLE_SCENE: False
- NAME: da_sampling
USE_ROAD_PLANE: True
DB_INFO_PATH:
- kitti_dbinfos_train.pkl
PREPARE: {
filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Cyclist:5'],
filter_by_difficulty: [-1],
}
SAMPLE_GROUPS: ['Car:15', 'Pedestrian:10', 'Cyclist:10']
MIN_SAMPLING_DIS: 0
MAX_SAMPLING_DIS: 20
OCCLUSION_NOISE: 0.2
OCCLUSION_OFFSET: 2.
SAMPLING_METHOD: 'LiDAR-aware'
VERT_RES: 0.006
HOR_RES: 0.003
NUM_POINT_FEATURES: 4
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, -0.2]
LIMIT_WHOLE_SCENE: False
- NAME: random_local_noise
LOCAL_ROT_RANGE: [-0.78539816, 0.78539816]
TRANSLATION_STD: [1.0, 1.0, 0.5]
GLOBAL_ROT_RANGE: [0.0, 0.0]
EXTRA_WIDTH: [0.2, 0.2, 0.]
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.39269908, 0.39269908]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.95, 1.05]
- NAME: random_local_pyramid_aug
DROP_PROB: 0.25
SPARSIFY_PROB: 0.05
SPARSIFY_MAX_NUM: 50
SWAP_PROB: 0.1
SWAP_MAX_NUM: 50
X_TRANS:
AUG_CONFIG_LIST:
- NAME: world_rotation
WORLD_ROT_ANGLE: [0.39269908, 0, 0.39269908, -0.39269908, -0.39269908, 0]
- NAME: world_flip
ALONG_AXIS_LIST: [0, 1, 1, 0, 1, 0]
- NAME: world_scaling
WORLD_SCALE_RANGE: [ 0.98, 1.02, 1., 0.98, 1.02, 1.]
POINT_FEATURE_ENCODING: {
encoding_type: absolute_coordinates_encoding_mm,
used_feature_list: ['x', 'y', 'z', 'intensity'],
src_feature_list: ['x', 'y', 'z', 'intensity'],
num_features: 4
}
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': True
}
- NAME: transform_points_to_voxels
VOXEL_SIZE: [0.05, 0.05, 0.05]
MAX_POINTS_PER_VOXEL: 5
MAX_NUMBER_OF_VOXELS: {
'train': 16000,
'test': 40000
}
MODEL: NAME: VoxelRCNN
VFE:
NAME: MeanVFE
MODEL: 'max'
BACKBONE_3D:
NAME: TeVoxelBackBone8x
NUM_FILTERS: [16, 32, 64, 64]
RETURN_NUM_FEATURES_AS_DICT: True
OUT_FEATURES: 64
MAP_TO_BEV:
NAME: BEVPool
NUM_BEV_FEATURES: 256
ALIGN_METHOD: 'max'
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [4, 4]
LAYER_STRIDES: [1, 2]
NUM_FILTERS: [64, 128]
UPSAMPLE_STRIDES: [1, 2]
NUM_UPSAMPLE_FILTERS: [128, 128]
DENSE_HEAD:
NAME: AnchorHeadSingle
CLASS_AGNOSTIC: False
USE_DIRECTION_CLASSIFIER: True
DIR_OFFSET: 0.78539
DIR_LIMIT_OFFSET: 0.0
NUM_DIR_BINS: 2
ANCHOR_GENERATOR_CONFIG: [
{
'class_name': 'Car',
'anchor_sizes': [[3.9, 1.6, 1.56]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-1.78],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.6,
'unmatched_threshold': 0.45
},
{
'class_name': 'Pedestrian',
'anchor_sizes': [[ 0.8, 0.6, 1.73 ]],
'anchor_rotations': [ 0, 1.57 ],
'anchor_bottom_heights': [ -0.6 ],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
},
{
'class_name': 'Cyclist',
'anchor_sizes': [[ 1.76, 0.6, 1.73 ]],
'anchor_rotations': [ 0, 1.57 ],
'anchor_bottom_heights': [ -0.6 ],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
}
]
TARGET_ASSIGNER_CONFIG:
NAME: AxisAlignedTargetAssigner
POS_FRACTION: -1.0
SAMPLE_SIZE: 512
NORM_BY_NUM_EXAMPLES: False
MATCH_HEIGHT: False
BOX_CODER: ResidualCoder
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 2.0,
'dir_weight': 0.2,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
ROI_HEAD:
NAME: TEDSHead
CLASS_AGNOSTIC: True
SHARED_FC: [256, 256]
CLS_FC: [256, 256]
REG_FC: [256, 256]
DP_RATIO: 0.01
NMS_CONFIG:
TRAIN:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS: False
NMS_PRE_MAXSIZE: 4000
NMS_POST_MAXSIZE: 512
NMS_THRESH: 0.8
TEST:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS: False
USE_FAST_NMS: True
SCORE_THRESH: 0.0
NMS_PRE_MAXSIZE: 4000
NMS_POST_MAXSIZE: 50
NMS_THRESH: 0.75
ROI_GRID_POOL:
FEATURES_SOURCE: ['x_conv3','x_conv4']
PRE_MLP: True
GRID_SIZE: 6
POOL_LAYERS:
x_conv3:
MLPS: [[32, 32], [32, 32]]
QUERY_RANGES: [[2, 2, 2], [4, 4, 4]]
POOL_RADIUS: [0.4, 0.8]
NSAMPLE: [16, 16]
POOL_METHOD: max_pool
x_conv4:
MLPS: [[32, 32], [32, 32]]
QUERY_RANGES: [[2, 2, 2], [4, 4, 4]]
POOL_RADIUS: [0.8, 1.6]
NSAMPLE: [16, 16]
POOL_METHOD: max_pool
TARGET_CONFIG:
BOX_CODER: ResidualCoder
ROI_PER_IMAGE: 160
FG_RATIO: 0.5
SAMPLE_ROI_BY_EACH_CLASS: True
CLS_SCORE_TYPE: roi_iou_x
CLS_FG_THRESH: [0.75, 0.65, 0.65]
CLS_BG_THRESH: [0.25, 0.15, 0.15]
CLS_BG_THRESH_LO: 0.1
HARD_BG_RATIO: 0.8
REG_FG_THRESH: [0.55, 0.5, 0.5]
ENABLE_HARD_SAMPLING: True
HARD_SAMPLING_THRESH: [0.5, 0.5, 0.5]
HARD_SAMPLING_RATIO: [0.5, 0.5, 0.5]
LOSS_CONFIG:
CLS_LOSS: BinaryCrossEntropy
REG_LOSS: smooth-l1
CORNER_LOSS_REGULARIZATION: True
GRID_3D_IOU_LOSS: False
LOSS_WEIGHTS: {
'rcnn_cls_weight': 1.0,
'rcnn_reg_weight': 1.0,
'rcnn_corner_weight': 1.0,
'rcnn_iou3d_weight': 1.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
SCORE_THRESH: 0.3
OUTPUT_RAW_SCORE: False
EVAL_METRIC: kitti
NMS_CONFIG:
MULTI_CLASSES_NMS: False
NMS_TYPE: nms_gpu
NMS_THRESH: 0.1
NMS_PRE_MAXSIZE: 4096
NMS_POST_MAXSIZE: 500
OPTIMIZATION: BATCH_SIZE_PER_GPU: 2 NUM_EPOCHS: 40
OPTIMIZER: adam_onecycle
LR: 0.01
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10
@csl1994
@csl1994 @Liu202209 你们用八卡训练过吗,复现出来了吗?我一直在想是不是训练卡数量的问题
没8卡那条件。没有,而且我跑出来的结果挺不稳定的
我检查了训练阶段的两个loss监督没有问题,而且rpn在训练阶段创建anchor时候是用的dict_batch['points']这个是在Rot0 coord下的,所以也佐证了bevpooling应该是想在Rot0做对齐的,我也是在bevpool这边这么做的,其次我也注意到multi-grid-pool-aggregation里关于rois的转换(roi_x_trans)也很叫我费解为啥是rotnum-1?我改完这些之后训练完直接R40eval差到离谱
各位大佬有能解释的么
@csjxchen
为什么我训练cyclist[ 1.76, 0.6, 1.73 ]和pedestrian[ 0.8, 0.6, 1.73 ]的所有精度都是0
Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00
请问哪个参数设置需要注意的么
大佬,你后来是怎么解决这个问题的,我也有相同的问题 @shenglunch
issue中有csjxchen提供的配置文件,但是我没达到论文中的精度,https://github.com/hailanyi/TED/issues/33#issuecomment-1910434327
@csjxchen 我只能1batch 4卡。car精度接近的模型,cyc和pre差很多。cyc相近的模型,,car和pre差很多。我在想是不是每个类都要单独训练,不能同时检测三个类.......
单类别训练Car确实可以达到文章的精度,多类别感觉达不到了
你有试过训练单汽车类的多模态吗?我单卡训练的结果很低啊: bbox AP:98.9466, 90.4582, 89.9018 bev AP:90.1253, 88.8376, 80.2418 3d AP:89.7045, 87.3508, 79.3342 aos AP:98.53, 89.77, 88.96 Car [email protected], 0.70, 0.70: bbox AP:99.5549, 96.5883, 91.5515 bev AP:96.0639, 92.4806, 85.3564 3d AP:95.1403, 87.0011, 82.0037 aos AP:99.16, 95.74, 90.56 Car [email protected], 0.50, 0.50: bbox AP:98.9466, 90.4582, 89.9018 bev AP:99.0606, 90.4330, 89.9194 3d AP:99.0323, 90.4258, 89.8929 aos AP:98.53, 89.77, 88.96 Car [email protected], 0.50, 0.50: bbox AP:99.5549, 96.5883, 91.5515 bev AP:99.5883, 96.5739, 91.5433 3d AP:99.5789, 96.5555, 91.5227 aos AP:99.16, 95.74, 90.56 这还是置信阈值为0.3的,置信阈值0.5和0.7的更低