githublsk
githublsk
@jcwchen 谢谢您,我在onnx-extensions中做了如下修改:  但是还是报如下错误,赶着上线,麻烦您帮忙解决一下,真是万分感谢 
@wolfshow Oh,yes, do you have a plan to support multi-language like layoutxlm for layoutmv3? because layoutxlm model is a little heavy
@[wolfshow](https://github.com/wolfshow) Thank you for your answer, I have a question that can I use LayoutLMv3 English model for finetuning my Chinese task?
> @githublsk The RE model is often trained with keys and values with ground truth labels. So, basically, you need two models to finish the SER and RE tasks. Thank...
> 可以详细说明一下问题吗? PaddleOCRv4 server端文字检测模型转ONNX准确率并未下降,ONNX转TRT后精度下降70%左右,可以参照之前有几个开发者提出了同样问题: https://github.com/PaddlePaddle/PaddleOCR/issues/10917 https://github.com/PaddlePaddle/PaddleOCR/issues/11419 麻烦帮忙解答一下,非常感谢 转换的命令: 
> 可以详细说明一下问题吗? 能否帮忙解答一下?多谢
> 可以尝试使用Fastdeploy进行推理,切换后端为trt: > > ``` > python infer.py --det_model ch_PP-OCRv4_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv4_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend trt > ``` > > 参考:https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples/vision/ocr/PP-OCR/cpu-gpu/python > > 但需要注意,目前没有在FP16上做过精度验证,确实可能存在精度损失的情况,建议先使用FP32。...
> thanks in advance Yes, just for two times