MetaGPT icon indicating copy to clipboard operation
MetaGPT copied to clipboard

ollama2 run error

Open victor-u opened this issue 1 year ago • 1 comments

ollama run llama2

metagpt "Create a 2048 game"

2024-03-12 00:06:45.725 | INFO | metagpt.const:get_metagpt_package_root:29 - Package root set to /home/victor 2024-03-12 00:06:47.036 | INFO | metagpt.team:invest:90 - Investment: $3.0. 2024-03-12 00:06:47.037 | INFO | metagpt.roles.role:_act:399 - Alice(Product Manager): to do PrepareDocuments(PrepareDocuments) 2024-03-12 00:06:47.053 | INFO | metagpt.utils.file_repository:save:60 - save to: /home/victor/workspace/20240312000647/docs/requirement.txt 2024-03-12 00:06:47.054 | INFO | metagpt.roles.role:_act:399 - Alice(Product Manager): to do WritePRD(WritePRD) 2024-03-12 00:06:47.054 | INFO | metagpt.actions.write_prd:run:86 - New requirement detected: Create a 2048 game Understood! Here's the generated output for the given input:

[CONTENT] { "Language": "en_us", "Programming Language": "Python", "Original Requirements": "Create a 2048 game", "Project Name": "game_2048", "Product Goals": [ "Create an engaging user experience", "Improve accessibility, be responsive", "More beautiful UI" ], "User Stories": [ "As a player, I want to be able to choose difficulty levels", "As a player, I want to see my score after each game", "As a player, I want to get restart button when I lose", "As a player, I want to see beautiful UI that make me feel good", "As a player, I want to play game via mobile phone" ], "Competitive Analysis": [ "2048 Game A: Simple interface, lacks responsive features", "play2048.co: Beautiful and responsive UI with my best score shown", "2048game.com: Responsive UI with my best score shown, but many ads" ], "Competitive Quadrant Chart": "quadrantChart\n title "Reach and engagement of campaigns"\n x-axis "Low Reach" --> "High Reach"\n y-axis "Low Engagement" --> "High Engagement"\n quadrant-1 "We should expand"\n quadrant-2 "Need to promote"\n quadrant-3 "Re-evaluate"\n quadrant-4 "May be improved"\n "Campaign A": [0.3, 0.6]\n "Campaign B": [0.45, 0.23]\n "Campaign C": [0.57, 0.69]\n "Campaign D": [0.78, 0.34]\n "Campaign E": [0.40, 0.34]\n "Campaign F": [0.35, 0.78]\n "Our Target Product": [0.5, 0.6]", "Requirement Analysis": "", "Requirement Pool": [ [ "P0", "The main code ..." ], [ "P0", "The game algorithm ..." ] ], "UI Design draft": "Basic function description with a simple style and layout.", "Anything UNCLEAR": "" } [/CONTENT] Great! Here's the generated output for the given input:

Language: en_us Programming Language: Python Original Requirements: Create a 2048 game Project Name: game_2048 Product Goals:

  1. Create an engaging user experience
  2. Improve accessibility, be responsive
  3. More beautiful UI

User Stories:

  1. As a player, I want to be able to choose difficulty levels
  2. As a player, I want to see my score after each game
  3. As a player, I want to get restart button when I lose
  4. As a player, I want to see beautiful UI that make me feel good
  5. As a player, I want to play game via mobile phone

Competitive Analysis:

  1. 2048 Game A: Simple interface, lacks responsive features
  2. play2048.co: Beautiful and responsive UI with my best score shown
  3. 2048game.com: Responsive UI with my best score shown, but many ads

Competitive Quadrant Chart: quadrantChart title "Reach and engagement of campaigns" x-axis Low Reach --> High Reach y-axis Low Engagement --> High Engagement

Quadrant 1: We should expand Quadrant 2: Need to promote Quadrant 3: Re-evaluate Quadrant 4: May be improved

"Campaign A": [0.3, 0.6] "Campaign B": [0.45, 0.23] "Campaign C": [0.57, 0.69] "Campaign D": [0.78, 0.34] "Campaign E": [0.40, 0.34] "Campaign F": [0.35, 0.78] "Our Target Product": [0.5, 0.6]

Requirement Analysis: None provided Requirement Pool: [ "P0", "The main code ..." ], [ "P0", "The game algorithm ..." ]

UI Design draft: Basic function description with a simple style and layout.

Anything UNCLEAR: None provided. 2024-03-12 00:06:56.829 | INFO | metagpt.utils.cost_manager:update_cost:103 - prompt_tokens: 1115, completion_tokens: 1190 2024-03-12 00:06:56.831 | INFO | metagpt.utils.git_repository:rename_root:203 - Delete directory /home/victor/workspace/game_2048 2024-03-12 00:06:56.832 | INFO | metagpt.utils.git_repository:rename_root:219 - Rename directory /home/victor/workspace/20240312000647 to /home/victor/workspace/game_2048 2024-03-12 00:06:56.833 | INFO | metagpt.utils.file_repository:save:60 - save to: /home/victor/workspace/game_2048/docs/prd/20240312000656.json no mermaid 2024-03-12 00:06:56.834 | WARNING | metagpt.utils.mermaid:mermaid_to_file:39 - RUN npm install -g @mermaid-js/mermaid-cli to install mmdc,or consider changing engine to playwright, pyppeteer, or ink. 2024-03-12 00:06:56.834 | INFO | metagpt.utils.file_repository:save:60 - save to: /home/victor/workspace/game_2048/resources/prd/20240312000656.md 2024-03-12 00:06:56.835 | INFO | metagpt.roles.role:_act:399 - Bob(Architect): to do WriteDesign(WriteDesign) Understood! I will follow the instructions in the nodes and generate an output that is wrapped inside [CONTENT]. Please provide me with the content for each node, and I will be happy to help you with your project. 2024-03-12 00:06:57.538 | INFO | metagpt.utils.cost_manager:update_cost:103 - prompt_tokens: 1374, completion_tokens: 46 2024-03-12 00:06:57.540 | WARNING | metagpt.utils.repair_llm_raw_output:extract_content_from_output:308 - extract_content try another pattern: [CONTENT]([\s\S]*)[/CONTENT] 2024-03-12 00:06:57.540 | WARNING | metagpt.utils.repair_llm_raw_output:run_and_passon:256 - parse json from content inside [CONTENT][/CONTENT] failed at retry 1, exp: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:06:57.540 | INFO | metagpt.utils.repair_llm_raw_output:repair_invalid_json:225 - repair_invalid_json, raw error: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:06:57.540 | ERROR | metagpt.utils.common:log_it:476 - Finished call to 'metagpt.actions.action_node.ActionNode._aask_v1' after 0.701(s), this was the 1st time calling it. exp: RetryError[<Future at 0x7aee7388de50 state=finished raised JSONDecodeError>] Of course! Here's the generated content for each node:

Implementation approach:

We will analyze the difficult points of the requirements, select the appropriate open-source framework, and implement the game using Python.

File list:

Here is the list of files we need to create:

  • main.py
  • game.py

Data structures and interfaces:

Using mermaid classDiagram code syntax, here are the classes and interfaces defined for our game:

    class Main {
        -SearchEngine search_engine
        +main() str
    }
    
    class SearchEngine {
        -Index index
        -Ranking ranking
        -Summary summary
        +search(query: str) str
    }
    
    class Index {
        -KnowledgeBase knowledge_base
        +create_index(data: dict)
        +query_index(query: str) list
    }
    
    class Ranking {
        +rank_results(results: list) list
    }
    
    class Summary {
        +summarize_results(results: list) str
    }
    
    class KnowledgeBase {
        +update(data: dict)
        +fetch_data(query: str) dict
    }
    
    Main --> SearchEngine
    SearchEngine --> Index
    SearchEngine --> Ranking
    SearchEngine --> Summary
    Index --> KnowledgeBase

Program call flow:

Here is the program call flow diagram:

    participant M as Main
    participant SE as SearchEngine
    participant I as Index
    participant R as Ranking
    participant S as Summary
    participant KB as KnowledgeBase
    
    M->>SE: search(query)
    SE->>I: query_index(query)
    I->>KB: fetch_data(query)
    KB-->>I: return data
    I-->>SE: return results
    SE->>R: rank_results(results)
    R-->>SE: return ranked_results
    SE->>S: summarize_results(ranked_results)
    S-->>SE: return summary
    SE-->>M: return summary

Anything UNCLEAR:

Clarification needed on third-party API integration, specifically how to fetch data from the API and update the knowledge base. 2024-03-12 00:07:02.450 | INFO | metagpt.utils.cost_manager:update_cost:103 - prompt_tokens: 0, completion_tokens: 560 2024-03-12 00:07:02.452 | WARNING | metagpt.utils.repair_llm_raw_output:extract_content_from_output:308 - extract_content try another pattern: [CONTENT]([\s\S]*)[/CONTENT] 2024-03-12 00:07:02.452 | WARNING | metagpt.utils.repair_llm_raw_output:run_and_passon:256 - parse json from content inside [CONTENT][/CONTENT] failed at retry 1, exp: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:02.452 | INFO | metagpt.utils.repair_llm_raw_output:repair_invalid_json:225 - repair_invalid_json, raw error: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:02.452 | ERROR | metagpt.utils.common:log_it:476 - Finished call to 'metagpt.actions.action_node.ActionNode._aask_v1' after 5.613(s), this was the 2nd time calling it. exp: RetryError[<Future at 0x7aee738a8fd0 state=finished raised JSONDecodeError>] Of course! Here's my interpretation of the provided information in the requested format:

[CONTENT] Implementation approach: We will analyze the difficult points of the requirements, select the appropriate open-source framework, and implement the game using Python.

File list:

  • main.py
  • game.py

Data structures and interfaces:

classDiagram
    class Main {
        -SearchEngine search_engine
        +main() str
    }
    
    class SearchEngine {
        -Index index
        -Ranking ranking
        -Summary summary
        +search(query: str) str
    }
    
    class Index {
        -KnowledgeBase knowledge_base
        +create_index(data: dict)
        +query_index(query: str) list
    }
    
    class Ranking {
        +rank_results(results: list) list
    }
    
    class Summary {
        +summarize_results(results: list) str
    }
    
    class KnowledgeBase {
        +update(data: dict)
        +fetch_data(query: str) dict
    }
    
    Main --> SearchEngine
    SearchEngine --> Index
    SearchEngine --> Ranking
    SearchEngine --> Summary
    Index --> KnowledgeBase

Program call flow:

participant M as Main
participant SE as SearchEngine
participant I as Index
participant R as Ranking
participant S as Summary
participant KB as KnowledgeBase

M->>SE: search(query)
SE->>I: query_index(query)
I->>KB: fetch_data(query)
KB-->>I: return data
I-->>SE: return results
SE->>R: rank_results(results)
R-->>SE: return ranked_results
SE->>S: summarize_results(ranked_results)
S-->>SE: return summary
SE-->>M: return summary

Anything UNCLEAR: Clarification needed on third-party API integration, specifically the Google Cloud Vision API for image recognition and classification. 2024-03-12 00:07:07.826 | INFO | metagpt.utils.cost_manager:update_cost:103 - prompt_tokens: 0, completion_tokens: 503 2024-03-12 00:07:07.826 | WARNING | metagpt.utils.repair_llm_raw_output:extract_content_from_output:308 - extract_content try another pattern: [CONTENT]([\s\S]*)[/CONTENT] 2024-03-12 00:07:07.826 | WARNING | metagpt.utils.repair_llm_raw_output:run_and_passon:256 - parse json from content inside [CONTENT][/CONTENT] failed at retry 1, exp: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:07.827 | INFO | metagpt.utils.repair_llm_raw_output:repair_invalid_json:225 - repair_invalid_json, raw error: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:07.827 | ERROR | metagpt.utils.common:log_it:476 - Finished call to 'metagpt.actions.action_node.ActionNode._aask_v1' after 10.987(s), this was the 3rd time calling it. exp: RetryError[<Future at 0x7aee73a2ecd0 state=finished raised JSONDecodeError>] Of course! Here is the updated document based on your input:

nodes: ": # "

  • Implementation approach: <class 'str'> # Analyze the difficult points of the requirements, select the appropriate open-source framework.

We will analyze the requirements and identify any challenging aspects that may require additional research or development. Based on our analysis, we recommend using an open-source framework to streamline the development process and ensure a smooth user experience.

  • File list: typing.List[str] # Only need relative paths. ALWAYS write a main.py or app.py here.

Please provide the relative paths for the files needed for the project. We will use these files to develop the game.

  • Data structures and interfaces: <class 'str'> # Use mermaid classDiagram code syntax, including classes, method(init etc.) and functions with type annotations, CLEARLY MARK the RELATIONSHIPS between classes, and comply with PEP8 standards. The data structures SHOULD BE VERY DETAILED and the API should be comprehensive with a complete design.

We will create detailed class diagrams for each component of the game, including the main code, game algorithm, and user interface. We will also define the relationships between these components and comply with PEP8 standards for type annotations and syntax.

  • Program call flow: <class 'str'> # Use sequenceDiagram code syntax, COMPLETE and VERY DETAILED, using CLASSES AND API DEFINED ABOVE accurately, covering the CRUD AND INIT of each object, SYNTAX MUST BE CORRECT.

We will create a detailed sequence diagram that covers the entire program flow, including the creation and initialization of objects, data retrieval and manipulation, and the final output. We will use classes and API defined above to ensure accuracy and completeness.

  • Anything UNCLEAR: <class 'str'> # Mention unclear project aspects, then try to clarify it.

Please let us know if there are any unclear aspects of the project, and we will do our best to clarify them. 2024-03-12 00:07:13.248 | INFO | metagpt.utils.cost_manager:update_cost:103 - prompt_tokens: 0, completion_tokens: 489 2024-03-12 00:07:13.249 | WARNING | metagpt.utils.repair_llm_raw_output:extract_content_from_output:308 - extract_content try another pattern: [CONTENT]([\s\S])[/CONTENT] 2024-03-12 00:07:13.249 | WARNING | metagpt.utils.repair_llm_raw_output:run_and_passon:256 - parse json from content inside [CONTENT][/CONTENT] failed at retry 1, exp: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:13.249 | INFO | metagpt.utils.repair_llm_raw_output:repair_invalid_json:225 - repair_invalid_json, raw error: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:13.249 | ERROR | metagpt.utils.common:log_it:476 - Finished call to 'metagpt.actions.action_node.ActionNode._aask_v1' after 16.410(s), this was the 4th time calling it. exp: RetryError[<Future at 0x7aee73a2d850 state=finished raised JSONDecodeError>] Understood! I will follow your instructions and generate the output in the requested format. Please provide me with the content for each node, and I will take care of the rest. 2024-03-12 00:07:16.683 | INFO | metagpt.utils.cost_manager:update_cost:103 - prompt_tokens: 0, completion_tokens: 37 2024-03-12 00:07:16.684 | WARNING | metagpt.utils.repair_llm_raw_output:extract_content_from_output:308 - extract_content try another pattern: [CONTENT]([\s\S])[/CONTENT] 2024-03-12 00:07:16.684 | WARNING | metagpt.utils.repair_llm_raw_output:run_and_passon:256 - parse json from content inside [CONTENT][/CONTENT] failed at retry 1, exp: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:16.684 | INFO | metagpt.utils.repair_llm_raw_output:repair_invalid_json:225 - repair_invalid_json, raw error: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:16.684 | ERROR | metagpt.utils.common:log_it:476 - Finished call to 'metagpt.actions.action_node.ActionNode._aask_v1' after 19.845(s), this was the 5th time calling it. exp: RetryError[<Future at 0x7aee73a27a50 state=finished raised JSONDecodeError>] Understood! I will follow your instructions and generate the output in the requested format. Please provide me with the content for each node, and I will take care of the rest. 2024-03-12 00:07:17.874 | INFO | metagpt.utils.cost_manager:update_cost:103 - prompt_tokens: 0, completion_tokens: 37 2024-03-12 00:07:17.874 | WARNING | metagpt.utils.repair_llm_raw_output:extract_content_from_output:308 - extract_content try another pattern: [CONTENT]([\s\S]*)[/CONTENT] 2024-03-12 00:07:17.874 | WARNING | metagpt.utils.repair_llm_raw_output:run_and_passon:256 - parse json from content inside [CONTENT][/CONTENT] failed at retry 1, exp: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:17.875 | INFO | metagpt.utils.repair_llm_raw_output:repair_invalid_json:225 - repair_invalid_json, raw error: Expecting value: line 1 column 1 (char 0) 2024-03-12 00:07:17.875 | ERROR | metagpt.utils.common:log_it:476 - Finished call to 'metagpt.actions.action_node.ActionNode._aask_v1' after 21.035(s), this was the 6th time calling it. exp: RetryError[<Future at 0x7aee73a25790 state=finished raised JSONDecodeError>] 2024-03-12 00:07:17.875 | WARNING | metagpt.utils.common:wrapper:571 - There is a exception in role's execution, in order to resume, we delete the newest role communication message in the role's memory. 2024-03-12 00:07:17.876 | ERROR | metagpt.utils.common:wrapper:553 - Exception occurs, start to serialize the project, exp: Traceback (most recent call last): File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/init.py", line 382, in call result = fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/utils/repair_llm_raw_output.py", line 284, in retry_parse_json_text parsed_data = CustomDecoder(strict=False).decode(output) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

The above exception was the direct cause of the following exception:

Traceback (most recent call last): File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/_asyncio.py", line 50, in call result = await fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/actions/action_node.py", line 427, in _aask_v1 parsed_data = llm_output_postprocess( ^^^^^^^^^^^^^^^^^^^^^^^ tenacity.RetryError: RetryError[<Future at 0x7aee73a25790 state=finished raised JSONDecodeError>]

The above exception was the direct cause of the following exception:

Traceback (most recent call last): File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/utils/common.py", line 562, in wrapper return await func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/roles/role.py", line 558, in run rsp = await self.react() ^^^^^^^^^^^^^^^^^^ tenacity.RetryError: RetryError[<Future at 0x7aee73a25390 state=finished raised RetryError>]

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/utils/common.py", line 548, in wrapper result = await func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/team.py", line 134, in run await self.env.run() Exception: Traceback (most recent call last): File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/init.py", line 382, in call result = fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/utils/repair_llm_raw_output.py", line 284, in retry_parse_json_text parsed_data = CustomDecoder(strict=False).decode(output) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/utils/custom_decoder.py", line 297, in decode return super().decode(s) ^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/json/decoder.py", line 337, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/json/decoder.py", line 355, in raw_decode raise JSONDecodeError("Expecting value", s, err.value) from None json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

The above exception was the direct cause of the following exception:

Traceback (most recent call last): File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/_asyncio.py", line 50, in call result = await fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/actions/action_node.py", line 427, in _aask_v1 parsed_data = llm_output_postprocess( ^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/provider/postprocess/llm_output_postprocess.py", line 19, in llm_output_postprocess result = postprocess_plugin.run(output=output, schema=schema, req_key=req_key) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/provider/postprocess/base_postprocess_plugin.py", line 68, in run new_output = self.run_repair_llm_output(output=output, schema=schema, req_key=req_key) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/provider/postprocess/base_postprocess_plugin.py", line 32, in run_repair_llm_output parsed_data = self.run_retry_parse_json_text(content) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/provider/postprocess/base_postprocess_plugin.py", line 47, in run_retry_parse_json_text parsed_data = retry_parse_json_text(output=content) # should use output=content ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/init.py", line 289, in wrapped_f return self(f, *args, **kw) ^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/init.py", line 379, in call do = self.iter(retry_state=retry_state) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/init.py", line 326, in iter raise retry_exc from fut.exception() tenacity.RetryError: RetryError[<Future at 0x7aee73a25790 state=finished raised JSONDecodeError>]

The above exception was the direct cause of the following exception:

Traceback (most recent call last): File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/utils/common.py", line 562, in wrapper return await func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/roles/role.py", line 558, in run rsp = await self.react() ^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/roles/role.py", line 525, in react rsp = await self._react() ^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/roles/role.py", line 471, in _react rsp = await self._act() ^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/roles/role.py", line 400, in _act response = await self.rc.todo.run(self.rc.history) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/actions/design_api.py", line 58, in run doc = await self._update_system_design(filename=filename) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/actions/design_api.py", line 86, in _update_system_design system_design = await self._new_system_design(context=prd.content) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/actions/design_api.py", line 73, in _new_system_design node = await DESIGN_API_NODE.fill(context=context, llm=self.llm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/actions/action_node.py", line 505, in fill return await self.simple_fill(schema=schema, mode=mode, images=images, timeout=timeout, exclude=exclude) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/metagpt/actions/action_node.py", line 457, in simple_fill content, scontent = await self._aask_v1( ^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/_asyncio.py", line 88, in async_wrapped return await fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/_asyncio.py", line 47, in call do = self.iter(retry_state=retry_state) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/victor/anaconda3/envs/sd/lib/python3.11/site-packages/tenacity/init.py", line 326, in iter raise retry_exc from fut.exception() tenacity.RetryError: RetryError[<Future at 0x7aee73a25390 state=finished raised RetryError>]

victor-u avatar Mar 11 '24 16:03 victor-u

This issue is similar to #966, both caused by LLM not returning in the required format. Metagpt expects:

2024-03-12 00:07:13.249 | ...  parse json from content inside [CONTENT][/CONTENT]

But in reality, LLM returned six times, each time with issues:

  • 1st: 2024-03-12 00:06:56.835, llm returns:
Understood! I will follow the instructions in the nodes and generate an output that is wrapped inside [CONTENT]. Please provide me with the content for each node, and I will be happy to help you with your project.
  • 2nd: 2024-03-12 00:06:57.540, llm returns
Of course! Here's the generated content for each node:

Implementation approach:
We will analyze the difficult points of the requirements, select the appropriate open-source framework, and implement the game using Python.

File list:
Here is the list of files we need to create:

main.py
game.py
Data structures and interfaces:
Using mermaid classDiagram code syntax, here are the classes and interfaces defined for our game:

    class Main {
        -SearchEngine search_engine
        +main() str
    }
    
    class SearchEngine {
        -Index index
        -Ranking ranking
        -Summary summary
        +search(query: str) str
    }
    
    class Index {
        -KnowledgeBase knowledge_base
        +create_index(data: dict)
        +query_index(query: str) list
    }
    
    class Ranking {
        +rank_results(results: list) list
    }
    
    class Summary {
        +summarize_results(results: list) str
    }
    
    class KnowledgeBase {
        +update(data: dict)
        +fetch_data(query: str) dict
    }
    
    Main --> SearchEngine
    SearchEngine --> Index
    SearchEngine --> Ranking
    SearchEngine --> Summary
    Index --> KnowledgeBase
Program call flow:
Here is the program call flow diagram:

    participant M as Main
    participant SE as SearchEngine
    participant I as Index
    participant R as Ranking
    participant S as Summary
    participant KB as KnowledgeBase
    
    M->>SE: search(query)
    SE->>I: query_index(query)
    I->>KB: fetch_data(query)
    KB-->>I: return data
    I-->>SE: return results
    SE->>R: rank_results(results)
    R-->>SE: return ranked_results
    SE->>S: summarize_results(ranked_results)
    S-->>SE: return summary
    SE-->>M: return summary
Anything UNCLEAR:
Clarification needed on third-party API integration, specifically how to fetch data from the API and update the knowledge base.
  • 3rd: 2024-03-12 00:07:02.452, llm returns:
Of course! Here's my interpretation of the provided information in the requested format:

[CONTENT]
Implementation approach: We will analyze the difficult points of the requirements, select the appropriate open-source framework, and implement the game using Python.

File list:

main.py
game.py
Data structures and interfaces:


Program call flow:

participant M as Main
participant SE as SearchEngine
participant I as Index
participant R as Ranking
participant S as Summary
participant KB as KnowledgeBase

M->>SE: search(query)
SE->>I: query_index(query)
I->>KB: fetch_data(query)
KB-->>I: return data
I-->>SE: return results
SE->>R: rank_results(results)
R-->>SE: return ranked_results
SE->>S: summarize_results(ranked_results)
S-->>SE: return summary
SE-->>M: return summary
Anything UNCLEAR: Clarification needed on third-party API integration, specifically the Google Cloud Vision API for image recognition and classification.
  • 4th: 2024-03-12 00:07:07.827, llm returns:
Of course! Here is the updated document based on your input:

nodes: ": # "
Implementation approach: <class 'str'> # Analyze the difficult points of the requirements, select the appropriate open-source framework.
We will analyze the requirements and identify any challenging aspects that may require additional research or development. Based on our analysis, we recommend using an open-source framework to streamline the development process and ensure a smooth user experience.

File list: typing.List[str] # Only need relative paths. ALWAYS write a main.py or app.py here.
Please provide the relative paths for the files needed for the project. We will use these files to develop the game.

Data structures and interfaces: <class 'str'> # Use mermaid classDiagram code syntax, including classes, method(init etc.) and functions with type annotations, CLEARLY MARK the RELATIONSHIPS between classes, and comply with PEP8 standards. The data structures SHOULD BE VERY DETAILED and the API should be comprehensive with a complete design.
We will create detailed class diagrams for each component of the game, including the main code, game algorithm, and user interface. We will also define the relationships between these components and comply with PEP8 standards for type annotations and syntax.

Program call flow: <class 'str'> # Use sequenceDiagram code syntax, COMPLETE and VERY DETAILED, using CLASSES AND API DEFINED ABOVE accurately, covering the CRUD AND INIT of each object, SYNTAX MUST BE CORRECT.
We will create a detailed sequence diagram that covers the entire program flow, including the creation and initialization of objects, data retrieval and manipulation, and the final output. We will use classes and API defined above to ensure accuracy and completeness.

Anything UNCLEAR: <class 'str'> # Mention unclear project aspects, then try to clarify it.
Please let us know if there are any unclear aspects of the project, and we will do our best to clarify them.
  • 5th: 2024-03-12 00:07:13.249, llm returns:
Understood! I will follow your instructions and generate the output in the requested format. Please provide me with the content for each node, and I will take care of the rest.
  • 6th: 2024-03-12 00:07:16.684, llm returns:
Understood! I will follow your instructions and generate the output in the requested format. Please provide me with the content for each node, and I will take care of the rest.

You can locate the response returned by LLM by searching for the log line metagpt.utils.cost_manager:update_cost, the response appears above the log.

iorisa avatar Mar 14 '24 08:03 iorisa