bupianlizhugui
bupianlizhugui
I found a problem when I was practicing the code. When the amount of data was more than 1000, the speed of dimensionality reduction was very slow and I could...
Given a table name and a problem, how do models make predictions? I see the source code only gives the validation script
when I run: def _debug(self, model, sliced_data, output): for i, item in enumerate(tqdm.tqdm(sliced_data)): (_, history), = **model.compute_loss([item], debug=True)** output.write( json.dumps({ 'index': i, 'history': history, }) + '\n') output.flush() def compute_loss(self,...
https://github.com/qiufengyuyi/event_extraction/blob/f7daafce811ee9c865353d1a91a827427d7c3e6a/models/bert_event_type_classification.py#L99  type_index_in_token_ids这个变量是存储了原始句子语料+标签索引后的len长度,每加一个标签长度都做存储。为啥和batch_ids有关系呢?
https://github.com/qiufengyuyi/event_extraction/blob/f7daafce811ee9c865353d1a91a827427d7c3e6a/data_processing/event_prepare_data.py#L564
请问刘老师有可导入到neo4j图书库到点边数据格式文件吗? 另一方面 ,关于电商届的数据 是否有相关资源的推荐? 非常感谢开源
from typing import List from PIL import Image import torch import numpy as np from uform import get_model, Modality import torch.nn as nn def get_image_embedding(images: List[Image.Image]): preprocessed = processor_image(images) embedding...
from uform import get_model, Modality import torch.nn as nn encoders, processors = get_model('unum-cloud/uform-vl-multilingual-v2',backend='torch') model_text = models[Modality.TEXT_ENCODER] model_image = models[Modality.IMAGE_ENCODER] processor_text = processors[Modality.TEXT_ENCODER] processor_image = processors[Modality.IMAGE_ENCODER] model_text.return_features = False model_image.return_features =...