Contrastive-Clustering icon indicating copy to clipboard operation
Contrastive-Clustering copied to clipboard

Code for the paper "Contrastive Clustering" (AAAI 2021)

Results 36 Contrastive-Clustering issues
Sort by recently updated
recently updated
newest added

Hi, Thank you for sharing your code. I would like to reproduce your results on CIFAR-10, I ran your original code with 4 GPUs and the results are attached below....

是这样的论文里的loss是很简单的ne xent loss但我看您的代码好像是又进行了简化还是有什么改变

Excellent work! We are grateful that the codes can be released for study. I have a question about the creation of the dataset: dataset = data.ConcatDataset([train_dataset, test_dataset]) I guess here...

![DD1B6B6D-E90F-47F1-A804-D22CC5531CC8](https://user-images.githubusercontent.com/48206866/157261651-45829f73-bc3e-42cf-af55-c815216e1584.jpeg) 大佬我想问问这样的运行结果算是正常的吗,如果不是的话可能是哪里有问题呀😣

Why the parameter 'weight_decay' set in code is 0.

作者您好,感谢您这出色的工作。 对于损失函数的传播和projector的参数更新我存在一点疑问:您的网络中并列存在instance_projector和cluster_projector,同时两个projector在正向传播过程中各自产生一个loss,您的做法是将两个projector的loss相加后再进行loss.backward(),这样的做法可以通过梯度下降同时优化两个并列的projector吗?这种方式和分别依次进行不同projector的loss.backward()有什么不同吗? 谢谢。

作者大大 ,您好,请问本文的acc 比如CIFAR10、100的acc 这是和任务有关吗,但是聚类也可以说是分类任务,可是分类任务对这些数据集用对比学习acc都刷得很高了(比如SimCLR对这些数据集分类的acc),不明白其中的道理。还请您解答,感谢!

I run the code in win10+python3.7+pytorch1.8.1+cu111 and get 21% accuracy on Cifar10 dataset.

您好,论文中提到了online clustering,请问该方法如何进行在线聚类呢?