3D-BoNet
3D-BoNet copied to clipboard
π₯3D-BoNet in Tensorflow (NeurIPS 2019, Spotlight)
Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni. arXiv:1906.01140, 2019.
(1) Setup
ubuntu 16.04 + cuda 8.0
python 2.7 or 3.6
tensorflow 1.2 or 1.4
scipy 1.3
h5py 2.9
open3d-python 0.3.0
Compile tf_ops
(1) To find tensorflow include path and library paths:
import tensorflow as tf
print(tf.sysconfig.get_include())
print(tf.sysconfig.get_lib())
(2) To change the path in all the complie files, e.g. tf_ops/sampling/tf_sampling_compile.sh, and then compile:
cd tf_ops/sampling
chmod +x tf_sampling_compile.sh
./tf_sampling_compile.sh
(2) Data
S3DIS: https://drive.google.com/open?id=1hOsoOqOWKSZIgAZLu2JmOb_U8zdR04v0
ηΎεΊ¦η: https://pan.baidu.com/s/1ww_Fs2D9h7_bA2HfNIa2ig ε―η :qpt7
Acknowledgement: we use the same data released by JSIS3D.
(3) Train/test
python main_train.py
python main_eval.py
(4) Quantitative Results on ScanNet

(5) Qualitative Results on ScanNet

![]() |
![]() |
|---|---|
![]() |
![]() |
More results of ScanNet validation split are available at: More ScanNet Results
To visualize: python helper_data_scannet.py
(6) Qualitative Results on S3DIS
![]() |
![]() |
|---|

(7) Training Curves on S3DIS

(8) Video Demo (Youtube)
Citation
If you find our work useful in your research, please consider citing:
@inproceedings{yang2019learning,
title={Learning object bounding boxes for 3d instance segmentation on point clouds},
author={Yang, Bo and Wang, Jianan and Clark, Ronald and Hu, Qingyong and Wang, Sen and Markham, Andrew and Trigoni, Niki},
booktitle={Advances in Neural Information Processing Systems},
pages={6737--6746},
year={2019}
}






