Bruce

Results 10 issues of Bruce

MN2 = np.concatenate([missing1[np.newaxis, :], (len(kp2)) * np.ones((1, len(missing1)), dtype=np.int64)]) MN3 = np.concatenate([missing2[np.newaxis, :], (len(kp1)) * np.ones((1, len(missing2)), dtype=np.int64)])

![image](https://github.com/kaanakan/stretchbev/assets/45158420/c2bf9691-76c0-4c42-a34c-adb25f3eceaf)

Excuse me, dear author! There are only train.py and benchmark.py for inference speed.

https://github.com/GT-RIPL/MultiAgentPerception/blob/4ef300547a7f7af2676a034f7cf742b009f57d99/ptsemseg/trainer.py#L968

https://github.com/GT-RIPL/MultiAgentPerception/blob/4ef300547a7f7af2676a034f7cf742b009f57d99/ptsemseg/trainer.py#L1028

Excuse me, is there any available tool to visualize the predicted results?

CARLA version: Platform/OS: Ubuntu Problem you have experienced: How to generate dataset labels with the same format as nuscenes What you expected to happen: The related source code