GraphCL
GraphCL copied to clipboard
Error information when I run the, gsimclr.py --DS ENZYMES --lr 0.01 --local --num-gc-layers 3 --aug random4 --seed 0
600 1
lr: 0.01 num_features: 1 hidden_dim: 32 num_gc_layers: 3
/opt/conda/conda-bld/pytorch_1623448224956/work/aten/src/ATen/native/cuda/Indexing.cu:702: indexSelectLargeIndex: block: [158,0,0], thread: [105,0,0] Assertion srcIndex < srcSelectDimSize
failed.
/opt/conda/conda-bld/pytorch_1623448224956/work/aten/src/ATen/native/cuda/Indexing.cu:702: indexSelectLargeIndex: block: [158,0,0], thread: [55,0,0] Assertion srcIndex < srcSelectDimSize
failed.
/opt/conda/conda-bld/pytorch_1623448224956/work/aten/src/ATen/native/cuda/Indexing.cu:702: indexSelectLargeIndex: block: [158,0,0], thread: [56,0,0] Assertion srcIndex < srcSelectDimSize
failed.
/opt/conda/conda-bld/pytorch_1623448224956/work/aten/src/ATen/native/cuda/Indexing.cu:702: indexSelectLargeIndex: block: [158,0,0], thread: [57,0,0] Assertion srcIndex < srcSelectDimSize
failed.
/opt/conda/conda-bld/pytorch_1623448224956/work/aten/src/ATen/native/cuda/Indexing.cu:702: indexSelectLargeIndex: block: [158,0,0], thread: [58,0,0] Assertion srcIndex < srcSelectDimSize
failed.
/opt/conda/conda-bld/pytorch_1623448224956/work/aten/src/ATen/native/cuda/Indexing.cu:702: indexSelectLargeIndex: block: [158,0,0], thread: [59,0,0] Assertion srcIndex < srcSelectDimSize
failed.
/opt/conda/conda-bld/pytorch_1623448224956/work/aten/src/ATen/native/cuda/Indexing.cu:702: indexSelectLargeIndex: block: [158,0,0], thread: [60,0,0] Assertion srcIndex < srcSelectDimSize
failed.
/opt/conda/conda-bld/pytorch_1623448224956/work/aten/src/ATen/native/cuda/Indexing.cu:702: indexSelectLargeIndex: block: [158,0,0], thread: [61,0,0] Assertion srcIndex < srcSelectDimSize
failed.
Traceback (most recent call last):
File "/home/zhenghua/pythoncode/unsupervised_graph_TU/gsimclr.py", line 190, in
Can anyone help me with what wrong with the algorithm or the enviroment?
the environment as follows:
Jinja2 | 3.0.1 | 3.0.1 |
---|---|---|
MarkupSafe | 2.0.1 | 2.0.1 |
Pillow | 8.2.0 | 8.2.0 |
PySocks | 1.7.1 | 1.7.1 |
brotlipy | 0.7.0 | 0.7.0 |
certifi | 2020.6.20 | 2021.5.30 |
cffi | 1.14.5 | 1.14.5 |
chardet | 4.0.0 | 4.0.0 |
cryptography | 3.4.7 | 3.4.7 |
cycler | 0.10.0 | 0.10.0 |
decorator | 4.4.2 | 5.0.9 |
googledrivedownloader | 0.4 | 0.4 |
idna | 2.10 | 3.2 |
joblib | 1.0.1 | 1.0.1 |
kiwisolver | 1.3.1 | 1.3.1 |
matplotlib | 3.4.2 | 3.4.2 |
mkl-fft | 1.3.0 | 1.3.0 |
mkl-random | 1.2.1 | 1.2.2 |
mkl-service | 2.3.0 | 2.4.0 |
networkx | 2.5.1 | 2.6rc2 |
numpy | 1.20.2 | 1.21.0 |
olefile | 0.46 | 0.47.dev4 |
pandas | 1.2.5 | 1.3.0rc1 |
pip | 21.1.2 | 21.1.3 |
pyOpenSSL | 20.0.1 | 20.0.1 |
pycparser | 2.20 | 2.20 |
pyparsing | 2.4.7 | 3.0.0b2 |
python-dateutil | 2.8.1 | 2.8.1 |
python-louvain | 0.15 | 0.15 |
pytz | 2021.1 | 2021.1 |
requests | 2.25.1 | 2.25.1 |
scikit-learn | 0.24.2 | 0.24.2 |
scipy | 1.6.2 | 1.7.0 |
seaborn | 0.11.0 | 0.11.1 |
setuptools | 52.0.0.post20210125 | 57.0.0 |
six | 1.16.0 | 1.16.0 |
threadpoolctl | 2.1.0 | 2.1.0 |
torch | 1.9.0 | 1.9.0 |
torch-cluster | 1.5.9 | 1.5.9 |
torch-geometric | 1.7.2 | 1.7.2 |
torch-scatter | 2.0.7 | 2.0.7 |
torch-sparse | 0.6.10 | 0.6.10 |
torch-spline-conv | 1.2.1 | 1.2.1 |
torchaudio | 0.9.0a0+33b2469 | 0.9.0 |
torchvision | 0.10.0 | 0.10.0 |
tornado | 6.1 | 6.1 |
tqdm | 4.61.1 | 4.61.1 |
typing-extensions | 3.7.4.3 | 3.10.0.0 |
urllib3 | 1.26.6 | 1.26.6 |
wheel | 0.36.2 | 0.36.2 |
Hi @Austinzhenghua,
Thanks for your feedback. Does torch_geometric==1.7.2 not work for you? You can take a try version 1.6.0/1.6.1 for this experiment.
Hi. can I have your we-chat to ask you some more detailed questions? hua zheng @.*** 签名由 网易邮箱大师 定制 On 06/29/2021 21:38, Yuning You wrote: Hi @Austinzhenghua, Thanks for your feedback. Does torch_geometric==1.7.2 not work for you? You can take a try version 1.6.0/1.6.1 for this experiment. — You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub, or unsubscribe.
Just for a test, are you capable to run this https://github.com/fanyun-sun/InfoGraph/tree/master/unsupervised which the unsupervised_TU experiment is built on?
Just for a test, are you capable to run this https://github.com/fanyun-sun/InfoGraph/tree/master/unsupervised which the unsupervised_TU experiment is built on?
Yes, I can run this algorithm, but it seems it didn't use GPU to train. The error above did cause by the version of torch_geometric. Can you run it in your computrer? Thanks a lot!
Traceback (most recent call last):
File "/home/zhenghua/pythoncode/unsupervised_TU_zh/gsimclr.py", line 189, in
I run it on the CPU get this error.
I find the shape of x is different from your algorithm and infograph. the first one is infograph.
It works well on my machine. What is the command u use? Please take a look at readme https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU#readme.
Traceback (most recent call last): File "/home/zhenghua/pythoncode/unsupervised_TU_zh/gsimclr.py", line 189, in emb, y = model.encoder.get_embeddings(dataloader_eval) File "/home/zhenghua/pythoncode/unsupervised_TU_zh/gin.py", line 77, in get_embeddings x, _ = self.forward(x, edge_index, batch) File "/home/zhenghua/pythoncode/unsupervised_TU_zh/gin.py", line 52, in forward x = F.relu(self.convs[i](x, edge_index)) File "/home/zhenghua/.conda/envs/graphcontra/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call result = self.forward(*input, **kwargs) File "/home/zhenghua/.conda/envs/graphcontra/lib/python3.6/site-packages/torch_geometric/nn/conv/gin_conv.py", line 63, in forward out = self.propagate(edge_index, x=x, size=size) File "/home/zhenghua/.conda/envs/graphcontra/lib/python3.6/site-packages/torch_geometric/nn/conv/message_passing.py", line 233, in propagate kwargs) File "/home/zhenghua/.conda/envs/graphcontra/lib/python3.6/site-packages/torch_geometric/nn/conv/message_passing.py", line 158, in collect j if arg[-2:] == '_j' else i) File "/home/zhenghua/.conda/envs/graphcontra/lib/python3.6/site-packages/torch_geometric/nn/conv/message_passing.py", line 127, in lift return src.index_select(self.node_dim, index) RuntimeError: index out of range: Tried to access index 4324 out of table with 4323 rows. at /opt/conda/conda-bld/pytorch_1579027003190/work/aten/src/TH/generic/THTensorEvenMoreMath.cpp:418
I run it on the CPU get this error.
I have the same error. Have you fixed it?
Hi @ztk1996,
I remember I tested the command and it worked ok in my machine. Would you also share your environment and the command you run?
Hi @ztk1996,
I remember I tested the command and it worked ok in my machine. Would you also share your environment and the command you run?
Thanks for your reply. Error information when I run "./go.sh 1 AIDS subgraph" on CPU is as follows.
- for seed in 0 1 2 3 4
- CUDA_VISIBLE_DEVICES=1
- python gsimclr.py --DS AIDS --lr 0.01 --local --num-gc-layers 3 --aug subgraph --seed 0
dataset length: 2000
1
================
lr: 0.01
num_features: 1
hidden_dim: 32
num_gc_layers: 3
================
Traceback (most recent call last):
File "gsimclr.py", line 188, in
emb, y = model.encoder.get_embeddings(dataloader_eval) File "/home/zt/GraphCL/unsupervised_TU/gin.py", line 89, in get_embeddings x, _ = self.forward(x, edge_index, batch) File "/home/zt/GraphCL/unsupervised_TU/gin.py", line 62, in forward x = F.relu(self.convs[i](x, edge_index)) File "/home/zt/.conda/envs/GraphCL-test/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/zt/.conda/envs/GraphCL-test/lib/python3.8/site-packages/torch_geometric/nn/conv/gin_conv.py", line 64, in forward out = self.propagate(edge_index, x=x, size=size) File "/home/zt/.conda/envs/GraphCL-test/lib/python3.8/site-packages/torch_geometric/nn/conv/message_passing.py", line 233, in propagate coll_dict = self.collect(self.user_args, edge_index, size, File "/home/zt/.conda/envs/GraphCL-test/lib/python3.8/site-packages/torch_geometric/nn/conv/message_passing.py", line 157, in collect data = self.lift(data, edge_index, File "/home/zt/.conda/envs/GraphCL-test/lib/python3.8/site-packages/torch_geometric/nn/conv/message_passing.py", line 127, in lift return src.index_select(self.node_dim, index) IndexError: index out of range in self
torch: 1.7.0 torch-geometric: 1.7.2
@ztk1996
Please take a try to run with torch-geometric==1.6.0 and on GPU. Since both of you use torch-geometric>=1.7.0 and on CPU, I guess it might be the source of error.
@ztk1996
Please take a try to run with torch-geometric==1.6.0 and on GPU. Since both of you use torch-geometric>=1.7.0 and on CPU, I guess it might be the source of error.
I try to run with torch_geometric==1.6.0, pytorch==1.7.0 and on GPU. And the error information is as follows.
- for seed in 0 1 2 3 4
- CUDA_VISIBLE_DEVICES=0
- python gsimclr.py --DS AIDS --lr 0.01 --local --num-gc-layers 3 --aug subgraph --seed 0
dataset length: 2000
1
================
lr: 0.01
num_features: 1
hidden_dim: 32
num_gc_layers: 3
================
Traceback (most recent call last):
File "gsimclr.py", line 188, in
emb, y = model.encoder.get_embeddings(dataloader_eval) File "/home/zt/GraphCL/unsupervised_TU/gin.py", line 89, in get_embeddings x, _ = self.forward(x, edge_index, batch) File "/home/zt/GraphCL/unsupervised_TU/gin.py", line 62, in forward x = F.relu(self.convs[i](x, edge_index)) File "/home/zt/.conda/envs/PYG160/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/home/zt/.conda/envs/PYG160/lib/python3.7/site-packages/torch_geometric/nn/conv/gin_conv.py", line 69, in forward return self.nn(out) File "/home/zt/.conda/envs/PYG160/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/home/zt/.conda/envs/PYG160/lib/python3.7/site-packages/torch/nn/modules/container.py", line 117, in forward input = module(input) File "/home/zt/.conda/envs/PYG160/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/home/zt/.conda/envs/PYG160/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 93, in forward return F.linear(input, self.weight, self.bias) File "/home/zt/.conda/envs/PYG160/lib/python3.7/site-packages/torch/nn/functional.py", line 1690, in linear ret = torch.addmm(bias, input, weight.t()) RuntimeError: CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling cublasCreate(handle)
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [89,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [90,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [91,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [92,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [93,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [94,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [95,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [96,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [97,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [98,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [99,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [100,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [101,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [112,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [113,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [114,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [115,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [116,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [117,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [118,0,0] AssertionsrcIndex < srcSelectDimSize
failed. /opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/ATen/native/cuda/Indexing.cu:658: indexSelectLargeIndex: block: [48,0,0], thread: [119,0,0] AssertionsrcIndex < srcSelectDimSize
failed.
Besides, when I run with torch_geometric==1.6.0, pytorch==1.7.0 and on CPU. The error information is the same as run with torch_geometric==1.7.2.
@ztk1996
My impression is that the version of torch_geometric and pytorch should be consistent (https://github.com/rusty1s/pytorch_geometric)? If using torch_geometric==1.6 I would also use pytorch==1.6. Please notify me if this also not works. Thanks.