QIN2DIM
QIN2DIM
In 2022, we can insert a mouse track based on the Bessel curve in some visual challenges. Any operation is done based on `motiondata`.
@johnsonz 更新一下镜像,重新复制粘贴一下配置模版。
这个项目一年后还能更新,在座的各位都有责任。
boring. It just checks if you press F12 to see the DOM source code.
在 `/settings/llm` 的 OLLAMA 配置里单独填写 CUSTOM_MODELS 有效,但这并不是预期的效果,  减少模型后: 
@arvinxx 也许可以像 #1352 一样,从 ollama 暴露的 `/api/tags` 扫描已拉取的模型列表,不过这样操作也会引入新的问题。 好处就是可以直接从 response 拿到 ModelProviderCard 中的 model_id,调用模型的时候不会有传参上的问题。 不太方便的地方就是扫到的 model_id 毕竟是代码化的命名,要 display 到前端可能需要单独命名才会好看,logo,vision,functionCall 之类的设置就更不好搞了。 不过考虑到 Ollama 还支持开发者从 huggingface 之类的平台上拉取开源模型自己 build 量化模型,命名也就千奇百怪了,如果能直接利用 Ollama 的基础设施,那缝上 lobe-chat...
@winglet0996 I have solved this issue. ``` [Unit] Description=Ollama Service After=network-online.target [Service] ExecStart=/usr/local/bin/ollama serve User=root # important Group=root # important Restart=always RestartSec=3 Environment="PATH=/root/.cargo/bin:/usr/local/cuda-11.7/bin:/eam/gsfctl:/eam/conda/bin:/eam/conda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin" Environment="OLLAMA_HOST=0.0.0.0:11434" Environment="OLLAMA_MODELS=/path_to/ollama/.ollama/models" Environment="NO_PROXY=localhost,127.0.0.1,.example.com" [Install] WantedBy=default.target ``` The...
You can perform the zero-shot image binary classification task by modifying the modelhub instance variable. You don't need to train the model yourself. CLIP can already handle all image classification...
For CLIP, I have not provided a better reference case. For CLIP prompt,I offer two trigger options.`clip_candidates` and `datalake`, at the moment I prefer datalake. I plan to use clip_candidates...
There are still some issues with `clip_candidates`, and I will subsequently change its data structure, which currently struggles to cope with the complex demands of prompt orchestration. I'd like it...