keras2c icon indicating copy to clipboard operation
keras2c copied to clipboard

A simple library to deploy Keras neural networks in pure C for realtime applications

####### keras2c #######

|Build-Status| |Codecov|

|License| |DOI|

keras2c is a library for deploying keras neural networks in C99, using only standard libraries. It is designed to be as simple as possible for real time applications.

Quickstart


After cloning the repo, install the necessary packages with pip install -r requirements.txt.

keras2c can be used from the command line:

.. code-block:: bash

python -m keras2c [-h] [-m] [-t] model_path function_name

A library for converting the forward pass (inference) part of a keras model to
    a C function

positional arguments:
  model_path         File path to saved keras .h5 model file
  function_name      What to name the resulting C function
 
optional arguments:
  -h, --help         show this help message and exit
  -m, --malloc       Use dynamic memory for large arrays. Weights will be
                     saved to .csv files that will be loaded at runtime
  -t , --num_tests   Number of tests to generate. Default is 10

It can also be used with a python environment in the following manner:

.. code-block:: python

from keras2c import k2c
k2c(model, function_name, malloc=False, num_tests=10, verbose=True)

For more information, see Installation <https://f0uriest.github.io/keras2c/installation.html>_ and Usage <https://f0uriest.github.io/keras2c/usage.html>_

Supported Layers


  • Core Layers: Dense, Activation, Dropout, Flatten, Input, Reshape, Permute, RepeatVector, ActivityRegularization, SpatialDropout1D, SpatialDropout2D, SpatialDropout3D
  • Convolution Layers: Conv1D, Conv2D, Conv3D, Cropping1D, Cropping2D, Cropping3D, UpSampling1D, UpSampling2D, UpSampling3D, ZeroPadding1D, ZeroPadding2D, ZeroPadding3D
  • Pooling Layers: MaxPooling1D, MaxPooling2D, AveragePooling1D, AveragePooling2D, GlobalMaxPooling1D, GlobalAveragePooling1D, GlobalMaxPooling2D, GlobalAveragePooling2D, GlobalMaxPooling3D,GlobalAveragePooling3D
  • Recurrent Layers: SimpleRNN, GRU, LSTM, SimpleRNNCell, GRUCell, LSTMCell
  • Embedding Layers: Embedding
  • Merge Layers: Add, Subtract, Multiply, Average, Maximum, Minimum, Concatenate, Dot
  • Advanced Activation Layers: LeakyReLU, PReLU, ELU, ThresholdedReLU, Softmax, ReLU
  • Normalization Layers: BatchNormalization
  • Noise Layers: GaussianNoise, GaussianDropout, AlphaDropout
  • Layer Wrappers: TimeDistributed, Bidirectional

ToDo


  • Core Layers: Lambda, Masking
  • Convolution Layers: SeparableConv1D, SeparableConv2D, DepthwiseConv2D, Conv2DTranspose, Conv3DTranspose
  • Pooling Layers: MaxPooling3D, AveragePooling3D
  • Locally Connected Layers: LocallyConnected1D, LocallyConnected2D
  • Recurrent Layers: ConvLSTM2D, ConvLSTM2DCell
  • Merge Layers: Broadcasting merge between different sizes
  • Misc: models made from submodels

Contribute


  • Documentation: <https://f0uriest.github.io/keras2c/>_
  • Issue Tracker: <https://github.com/f0uriest/keras2c/issues>_
  • Source Code: <https://github.com/f0uriest/keras2c/>_

License


The project is licensed under the LGPLv3 license.

.. |Build-Status| image:: https://travis-ci.org/f0uriest/keras2c.svg?branch=master :target: https://travis-ci.org/f0uriest/keras2c :alt: Build Status .. |Codecov| image:: https://codecov.io/gh/f0uriest/keras2c/branch/master/graph/badge.svg :target: https://codecov.io/gh/f0uriest/keras2c :alt: Code Coverage .. |License| image:: https://img.shields.io/github/license/f0uriest/keras2c :target: https://github.com/f0uriest/keras2c/blob/master/LICENSE :alt: License: LGPLv3 .. |DOI| image:: https://zenodo.org/badge/193152058.svg :target: https://zenodo.org/badge/latestdoi/193152058 :alt: Please Cite Keras2c!