Xudong Wang
Xudong Wang
Hi, Thank you for your work and sharing code. Can the network model only input LR images for training?
elif opt.dataset_mode == 'baseline': from .objCompose_baseline import objComposeBaselineModel model = objComposeBaselineModel() elif opt.dataset_mode == 'baseline_unaligned': from .objCompose_cycleGAN_baseline import objComposeBaselineCycleModel model = objComposeBaselineCycleModel() else:
How is the vector value in classification.yaml obtained? I found that the vector value was not accurate
The defaults.yaml file path is set as follows path: local paths: # local: /home/anne/Anne/data/airway_vida_test/A2019RR46/ local: G:\Airway\A2069BH51\ The file structure is  Error content prompts ERROR: Insufficient count of input/output paths...
pth转换为onnx,用官方的代码转,并且测试是正确。但是onnx转换为trt,用的是tensorRT8.6.1,转换没有问题,但是推理出现box坐标是特别大的值,标签和得分是正确的。 D:\tool\TensorRT-8.6.1.6.Windows10.x86_64.cuda-11.8\TensorRT-8.6.1.6\bin\trtexec.exe --onnx=model.onnx --workspace=4096 --avgRuns=100 --shapes=images:1x3x640x640 --saveEngine=model.trt 我的C++推理代码如下 #include #include #include #include #include #include #include #include "NvInfer.h" #include "NvInferRuntimeCommon.h" #include #include using namespace nvinfer1; using namespace std; #define CUDA_CHECK(call) \...