DeepLiDAR
DeepLiDAR copied to clipboard
Deep Surface Normal Guided Depth Prediction for Outdoor Scene from Sparse LiDAR Data and Single Color Image (CVPR 2019)
Hi, I am using the scene_vis repo (linked [here](https://github.com/kujason/scene_vis)) to visualize the DeepLiDAR depth maps as 3D point-clouds and am encountering some odd visuals. I have attached two images below....
Hello, JiaxiongQ! when i read your code, i found that after you predict the surface normal vector, you perform some transformation operations on it. the code is: outputN = torch.zeros_like(normals2)...
Thank you for releasing the code. I have a question about generating dense depth. In 'depthCompletionNew_block' and 'depthCompletionNew_blockN' functions, the final output is generated by 'predict_normalE2'. However, depth map is...
hello when i try to reproduce the infrence result, i use the KITTI val_selection_cropped data, but the pred make me confused, when i print the pred.max(), i find all are...
Thanks for the excellent work. In your paper, I found that you train/test your model on NYU_v2 dataset and the delta metric are calculated, for delta(1.25^3), you reach 100%, I...
Hi! Thanks for your great work. How did you compute surface normal ground truth for carla data? From the ground truth dense depth map by local plane fitting?
你好: 首先很感谢能开源这样优秀的代码,但是有以下一些问题是我在复现你的训练过程中遇到的,希望你帮忙协助确认和解决,谢谢! Q1:生成surface normal的代码,是从lidar depth和groundtruth depth生成的吧?且生成的surface normal都是3通道的? Q2:进行第一步训练时,trainN.py的数据输入是rgb image,surface normal(lidar depth生成的)和surface normal(groundtruth depth生成的)。是用这三个数据作为输入吗? Q3:我按照Q2的3个数据作为输入,发现你的trainN.py调用的trainLoader.py而不是trainLoaderN.py,是有错误吗? Q4:我按照你的代码,使用trainN.py调用的trainLoader.py,读如的图片都是3通道的,为什么可以在代码中要把它reshape到1通道?是存在笔误吗?(如果我按照trainLoaderN.py,只有对其中一个surface normal作为多通道转单通道的处理,另外一个surface normal却没有,是什么原因呢)
Hello JiaxiongQ, Thank you for the wonderful work. I have some questions: 1. I want to know how to train on CARLA dataset? I didn't find the calibration files in...
I am unable to download the Carla dataset from the provided link: https://pan.baidu.com/s/1ayNWa7_9Ia2f6_lYzW8paA#list/path=%2F Do you have an alternate link?
您好! 非常感谢您开源这个SOTA的代码。在训练过程中有几个问题如下: 1. 在我的任务里,需要尽量轻便的深度补全网络,因此打算只从头训练trainD,py,在dataloader里发现有三个fileppath。分别是filepathl、filepathd、filepathgt,前两个分别是KITTI depth数据集的data_depth_velodyne/train和data_depth_annotated/train文件夹,想知道第三个filepathgt在我的任务里应该是什么呢,或者是否可以做修改使得trainD.py进行独立的训练呢。 2. 训练完trainD.py后,有不同surface normal,仅在trainD.py上得到的model和结果进一步训练train.py来提高rmse或者其他metrics的可能性吗~?