FATE icon indicating copy to clipboard operation
FATE copied to clipboard

An Industrial Grade Federated Learning Framework

Results 385 FATE issues
Sort by recently updated
recently updated
newest added
trafficstars

搭建完成fate之后跑toy,抛出 ![图片](https://user-images.githubusercontent.com/14867598/185353234-0a2f3e50-fb5b-4c64-86ad-7434ade5a82e.png)

任务配置文件: ``` json { "dsl_version": 2, "initiator": { "role": "guest", "party_id": 9999 }, "role": { "host": [ 10000 ], "guest": [ 9999 ] }, "component_parameters": { "role": { "guest": {...

[ERROR] [2022-08-03 15:03:02,609] [202208031501390085770] [2852:4727107008] - [task_executor._run_] [line:243]: 'x9' Traceback (most recent call last): File "../FATE-1.7.2/python/fate_flow/worker/task_executor.py", line 195, in _run_ cpn_output = run_object.run(cpn_input) File "../FATE-1.8.0/python/federatedml/model_base.py", line 236, in run self._run(cpn_input=cpn_input)...

请问 python/fate/ml/nn/test/test_fedpass_lenet.py 是否是论文 FedPass: Privacy-Preserving Vertical Federated Deep Learning with Adaptive Obfuscation 中的算法实现? ![image](https://github.com/FederatedAI/FATE/assets/162691077/5de1b9f7-1752-44f7-a008-e3f007685a47) 如果是的话,有下面几个问题: 1. test_fedpass_lenet.py 似乎没有 passive party 对 feature 的 obfuscation 2. fedpass 实现在 agg_layer 中,是在 host(passive方)经过...

federatedml

版本:FATE 2.0.0 对于组件的输入(dataframe_input),有些组件用的参数名是input_data(像psi、statistics、sample、datasplit等),有些用的是train_data(binning、scale、各建模算法)。 对于组件的输出(dataframe_output),nn和secureboost组件用的是train_data_output,其他组件用的都是train_output_data。 请问是否有考虑过对参数的命名进行统一呢,虽然组件输入的命名不同还好理解,但组件输出这个感觉很容易搞错……

**Issue Description:** Hello. I have discovered a performance degradation in the .loc function of pandas version 2.0.3 when .loc handling big DataFrame with non-unique indexes. When using pandas more than...

如图,fate这边会抛spark exception:org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle 0。而在spark-ui上看的话,任务都是成功的。 请问有人碰到过类似的问题吗。求解答。 环境:Centos7 + FATE v1.11.0 + Spark + RabbitMQ。

请问 "优化客户端身份验证逻辑,支持多个客户端的权限管理" 2.0.0有具体的文档说明吗 我在现有的文档中没找见

document

Hello, What are the available metrics for early stopping in Logistic Regression model ? Do we currently have 'AUC' and 'ks' only ?

在2.X API接口文档中只看见了模型绑定接口,没有看见模型部署和模型加载接口, 并且模型绑定接口没有给参数说明