AlphaNext

Results 17 issues of AlphaNext

"alpha: A scalar for focal loss alpha hyper-parameter. If positive samples number > negtive samples number, alpha < 0.5 and vice versa." your function: ` L=-labels*(1-alpha)*((1-y_pred)*gamma)*tf.log(y_pred)-\ (1-labels)*alpha*(y_pred**gamma)*tf.log(1-y_pred)` note: * and...

### Search before asking - [X] I have searched the YOLOv8 [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/ultralytics/ultralytics/discussions) and found no similar questions. ### Question train model with multi-gpu, but get the following error:...

question

script.py: ``` from mteb import MTEB from C_MTEB import * from sentence_transformers import SentenceTransformer # Define the sentence-transformers model name model_name = "../../bge-large-zh-v1.5" model = SentenceTransformer(model_name) evaluation = MTEB(task_langs=['zh'], tasks=['DuRetrieval'])...

python eval_C-MTEB.py --model_name_or_path ../../bge-large-zh-v1.5 --task_type DuRetrieval ``` Traceback (most recent call last): File "/Users/Downloads/llm-models/FlagEmbedding/C_MTEB/eval_C-MTEB.py", line 4, in from flag_dres_model import FlagDRESModel File "/Users/Downloads/llm-models/FlagEmbedding/C_MTEB/flag_dres_model.py", line 5, in from mteb import DRESModel...

很不错的工作,看给的例子都是简单的单Agent例子,请问有多Agent的示例吗?最好是关于RAG的,谢谢!

感谢你的工作,请问Frame数量对训练有哪些影响呢?看load视频部分的代码,训练的视频不管多少帧都采样成16帧,另外如果想生成稍微长点的视频(比如:10s),除了资源问题是首要问题,还有哪些需要注意的地方呢?

非常nice的工作,请问: 1)Consistent self-attention中的```RandSample```逻辑主要体现在哪些代码行? 2)Sampling tokens所需的batch内的不同图片token的来源是哪块呢? 另外好像发现两处比较明显的笔误: 1)```Xk, Xq, and Xv stand for the query, key, and value used in attention calculation, respectively.``` 2)Algorithm 1中的images_features、images_tokens不统一

作者你好,用这个repo中的代码在CTW1500数据集上直接进行训练,参数配置和config/ct下的tt基本相似,复现出的最佳模型指标结果与论文中的结果相差比较大: 论文中: P: 85.5, R: 79.2, F:82.2 复现结果: p: 0.8434, r: 0.7795, f: 0.8102 请问可以把total-text ctw1500 msra-td500 SynthText的7个最佳模型文件上传一下吗?这样方便进行实验对比和算法再优化,也可以提升引用 期待您的回复,非常感谢! ------------------------------------------------------ ctw1500使用的config文件如下: ``` { "model": { "type": "CT", "backbone": { "type":...

感谢您的工作,请问提供的模型文件中,pretrained_models下的模型是在哪个数据集上预训练的? ~~ 另外每个task预训练用到的数据一样吗?如果不一样,用的数据分别是什么? 最后有个小请求,请问可以在百度云盘上分享一份模型文件吗?Google云盘下载有点困难,感谢~~

start cmd ``` imagenetpath=mypath CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 moby_main.py \ --cfg configs/moby_swin_tiny.yaml --data-path ${imagenetpath} --batch-size 256 ``` but get the ```Gradient overflow. Skipping step, loss...