DataAnalysist

Results 12 issues of DataAnalysist

如题,如果我有多个任务:A、B、C、D那是不是需要创建多个类似A_cls这样的装饰器函数,如下所示: @preprocessing_fn def A_cls(params, mode): # get data # your work return input_list, target_list 能否根据具体任务动态的创建数据处理函数呢

0.3.4版本,执行notebook示例:Run Self Defined Problem,出现以下错误: InvalidArgumentError: 2 root error(s) found. (0) Invalid argument: `cycle_length` must be > 0 [[node ExperimentalParallelInterleaveDataset (defined at /home/appadmin/anaconda3/envs/multi_task/lib/python3.6/site-packages/bert_multitask_learning-0.3.4-py3.6.egg/bert_multitask_learning/read_write_tfrecord.py:520) ]] [[MultiDeviceIteratorToStringHandle/_8865]] (1) Invalid argument: `cycle_length` must be...

### Feature request i find this version can only support faiss-gpu, does it support faiss-gpu. maybe we can add something like annoy, hnswlib and so on ### Motivation add more...

Feature Description An optional configuration is provided, which allows users to freely choose to use faiss local library(or annoy,hnswlib, jina) remote/distributed vector database as vector storage. Problem Solved When the...

### Reminder - [X] I have read the README and searched the existing issues. ### Reproduction 最新的微调方法lisa可否集成进去,类似lora,qlora,galore微调方法 ### Expected behavior none ### System Info _No response_ ### Others _No response_

pending

rt,使用多卡训练时,若不设置ddp_find_unused_parameters=false,则会出现如下错误: RuntimeError: Expected to mark a variable ready only once. This error is caused by one of the following reasons: 1) Use of a module parameter outside the `forward` function....

### Reminder - [X] I have read the README and searched the existing issues. ### Reproduction MASTER_PORT=$(shuf -n 1 -i 10000-65535) DEEPSPEED_PATH=../config/ds_config_sft_z2_offload.json MODEL_PATH=/your path/Meta-Llama-3-8B OUTPUT_PATH=../output/llama3-8b-mod-sft LOG_PATH=../logs/result_mod_sft.log nohup deepspeed --num_gpus=4 --master_port...

pending

when uses code like this: ``` from FlagEmbedding import LayerWiseFlagLLMReranker reranker = LayerWiseFlagLLMReranker('/path/bge-reranker-v2-minicpm-layerwise', use_fp16=True) score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing...

[https://arxiv.org/pdf/2310.03708](url) MODPO folds language modeling directly into reward modeling, training LMs as implicit collective reward models (cRMs) that combine all objectives with specific weightings. While theoretically guaranteed to produce the...

enhancement
pending